Skip to main content

Regularity of Free Boundaries in Obstacle Problems

  • Chapter
  • First Online:
Geometric Measure Theory and Free Boundary Problems

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2284))

  • 1029 Accesses

Abstract

Free boundary problems are those described by PDE that exhibit a priori unknown (free) interfaces or boundaries. Such type of problems appear in Physics, Geometry, Probability, Biology, or Finance, and the study of solutions and free boundaries uses methods from PDE, Calculus of Variations, and Geometric Measure Theory. The main mathematical challenge is to understand the regularity of free boundaries. The Stefan problem and the obstacle problem are the most classical and motivating examples in the study of free boundary problems. A milestone in this context is the classical work of Caffarelli, in which he established for the first time the regularity of free boundaries in the obstacle problem, outside a certain set of singular points. This is one of the main results for which he got the Wolf Prize in 2012 and the Shaw Prize in 2018.

The goal of these notes is to introduce the obstacle problem, prove some of the main known results in this context, and give an overview of more recent research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Allen, H. Shahgholian, A new boundary Harnack principle (equations with right hand side). Arch. Rat. Mech. Anal. 234, 1413–1444 (2019)

    Article  MathSciNet  Google Scholar 

  2. I. Athanasopoulos, L. Caffarelli, Optimal regularity of lower dimensional obstacle problems. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Geor. Funkts. 34, 49–66, 226; reprinted in J. Math. Sci. (N.Y.) 132, 274–284 (2006)

    Google Scholar 

  3. I. Athanasopoulos, L. Caffarelli, S. Salsa, The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130, 485–498 (2008)

    Article  MathSciNet  Google Scholar 

  4. B. Barrios, A. Figalli, X. Ros-Oton, Global regularity for the free boundary in the obstacle problem for the fractional Laplacian. Am. J. Math. 140, 415–447 (2018)

    Article  MathSciNet  Google Scholar 

  5. L. Caffarelli, Further regularity for the Signorini problem. Commun. Partial Differ. Equ. 4, 1067–1075 (1979)

    Article  MathSciNet  Google Scholar 

  6. L. Caffarelli, The obstacle problem revisited. J. Fourier Anal. Appl. 4, 383–402 (1998)

    Article  MathSciNet  Google Scholar 

  7. L. Caffarelli, S. Salsa, A Geometric Approach to Free Boundary Problems (American Mathematical Society, Providence, 2005)

    Book  Google Scholar 

  8. M. Colombo, L. Spolaor, B. Velichkov, Direct epiperimetric inequalities for the thin obstacle problem and applications. Commun. Pure Appl. Math. 72, 384–420 (2020)

    Article  MathSciNet  Google Scholar 

  9. R. Cont, P. Tankov, Financial Modeling with Jump Processes. Chapman & Hall/CRC Financial Mathematics Series (Chapman & Hall/CRC, Boca Raton, 2004)

    Google Scholar 

  10. D. Danielli, N. Garofalo, A. Petrosyan, T. To, Optimal regularity and the free boundary in the parabolic Signorini problem. Mem. Am. Math. Soc. 249(1181), v + 103pp (2017)

    Google Scholar 

  11. E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari. Memorie della Accademia delle Scienze di Torino. Classe di Scienze Fisiche, Matematicahe e Naturali 3, 25–43 (1957)

    Google Scholar 

  12. D. De Silva, O. Savin, A note on higher regularity boundary Harnack inequality. Disc. Cont. Dyn. Syst. 35, 6155–6163 (2015)

    Article  MathSciNet  Google Scholar 

  13. D. De Silva, O. Savin, Boundary Harnack estimates in slit domains and applications to thin free boundary problems. Rev. Mat. Iberoam. 32, 891–912 (2016)

    Article  MathSciNet  Google Scholar 

  14. G. Duvaut, J.L. Lions, Inequalities in Mechanics and Physics. Grundlehren der Mathematischen Wissenschaften, vol. 219 (Springer, Berlin/Heidelberg/New York, 1976)

    Google Scholar 

  15. X. Fernández-Real, Y. Jhaveri, On the singular set in the thin obstacle problem: higher order blow-ups and the very thin obstacle problem (Anal. PDE, 2020, in press)

    Google Scholar 

  16. X. Fernández-Real, X. Ros-Oton, Regularity Theory for Elliptic PDE, forthcoming book, submitted (2019)

    Google Scholar 

  17. A. Figalli, J. Serra, On the fine structure of the free boundary for the classical obstacle problem. Invent. Math. 215, 311–366 (2019)

    Article  MathSciNet  Google Scholar 

  18. A. Figalli, X. Ros-Oton, J. Serra, Generic regularity of free boundaries for the obstacle problem. Publ. Math. IHÉS 132, 181–292 (2020)

    Article  MathSciNet  Google Scholar 

  19. M. Focardi, E. Spadaro, On the measure and the structure of the free boundary of the lower dimensional obstacle problem. Arch. Rat. Mech. Anal. 230, 125–184 (2018)

    Article  MathSciNet  Google Scholar 

  20. A. Friedman, Variational Principles and Free Boundary Problems (Dover, New York, 1988)

    MATH  Google Scholar 

  21. N. Garofalo, A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem. Invent. Math. 177, 414–461 (2009)

    Article  MathSciNet  Google Scholar 

  22. D. Kinderlehrer, G. Stampacchia, An Introduction to Variational Inequalities and Their Applications (SIAM, New York, 1980)

    MATH  Google Scholar 

  23. H. Koch, A. Petrosyan, W. Shi, Higher regularity of the free boundary in the elliptic Signorini problem. Nonlinear Anal. 126, 3–44 (2015)

    Article  MathSciNet  Google Scholar 

  24. B. Krummel, N. Wickramasekera, Fine properties of branch point singularities: two-valued harmonic functions. Preprint arXiv (2013)

    Google Scholar 

  25. R. Merton, Option pricing when the underlying stock returns are discontinuous. J. Finan. Econ. 5, 125–144 (1976)

    Article  Google Scholar 

  26. J.F. Nash, Parabolic equations. Proc. Nat. Acad. Sci. U. S. A. 43, 754–758 (1957)

    Article  MathSciNet  Google Scholar 

  27. J.F. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MathSciNet  Google Scholar 

  28. A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems. Graduate Studies in Mathematics, vol. 136 (American Mathematical Society, Providence, 2012)

    Google Scholar 

  29. J.-F. Rodrigues, Obstacle Problems in Mathematical Physics. North-Holland Mathematics Studies vol. 134 (North-Holland, Amsterdam/New York, 1987)

    Google Scholar 

  30. X. Ros-Oton, Obstacle problems and free boundaries: an overview. SeMA J. 75, 399–419 (2018)

    Article  MathSciNet  Google Scholar 

  31. X. Ros-Oton, D. Torres-Latorre, New boundary Harnack inequalities with a right hand side. Preprint arXiv (2020)

    Google Scholar 

  32. D.G. Schaeffer, Some examples of singularities in a free boundary. Ann. Scuola Norm. Sup. Pisa 4, 133–144 (1977)

    MathSciNet  MATH  Google Scholar 

  33. W. Shi, An epiperimetric inequality approach to the parabolic Signorini problem. Disc. Cont. Dyn. Syst. A 40, 1813–1846 (2020)

    Article  MathSciNet  Google Scholar 

  34. A. Signorini, Sopra alcune questioni di elastostatica. Atti Soc. It. Progr. Sc. 21(2), 143–148 (1933)

    MATH  Google Scholar 

  35. A. Signorini, Questioni di elasticità non linearizzata e semilinearizzata, Rend. Mat. e Appl. 18, 95–139 (1959)

    MathSciNet  MATH  Google Scholar 

  36. G.S. Weiss, A homogeneity improvement approach to the obstacle problem. Invent. Math. 138, 23–50 (1999)

    Article  MathSciNet  Google Scholar 

  37. B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author was supported by the European Research Council under the Grant Agreement No. 801867 “Regularity and singularities in elliptic PDE (EllipticPDE)”, by the Swiss National Science Foundation, and by MINECO grant MTM2017-84214-C2-1-P.

These lecture notes are based on Chapter 5 of the forthcoming book Regularity theory for elliptic PDE, X. Fernández-Real, X. Ros-Oton (2019). I would like to thank X. Fernández-Real and J. Serra for their comments and suggestions on a preliminary version of these notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Ros-Oton .

Editor information

Editors and Affiliations

Appendix: Proof of Proposition 12

Appendix: Proof of Proposition 12

Proposition 12 will follow from the following.

Lemma 9

For every β > 0 there exists δ > 0 such that the following holds.

Let \(E \subseteq \mathbb {R}^n\) such that for each x  E and r ∈ (0, r 0) there exists a m-dimensional plane L x,r , passing through x, for which

$$\displaystyle \begin{aligned} E \cap B_{r}(x) \subset \{ y : {\mathrm{dist}}(y, L_{x,r}) < \delta r \} . \end{aligned}$$

Then, \(\mathcal {H}^{m+\beta }(A) = 0\).

Proof

By a covering argument, we may assume that E ⊆ B 1 and 0 ∈ E. By assumption, there exists a plane L 0,1 such that

$$\displaystyle \begin{aligned} E \cap B_1 \subset \{ y : {\mathrm{dist}}(y, L_{0,1}) < \delta \} . \end{aligned}$$

Cover L 0,1 by a finite collection of balls {B 2δ(z k)}k=1,2,…,N where z k ∈ L 0,1 for each k and N ≤  m. Observe that {B 2δ(z k)}k=1,2,…,N covers {y : dist(y, L 0,1) < δ} and thus covers E ∩ B 1. Throw away the balls B 2δ(z k) that do not intersect E. For the remaining balls, let x k ∈ A ∩ B 2δ(z k). Now {B 4δ(x k)}k=1,2,…,N covers E ∩ B 1, x k ∈ E, with N ≤  m, and thus N(4δ)m+β ≤  β ≤ 1∕2, provided that δ > 0 is small enough.

Now observe that we can repeat this argument with B 4δ(x k) in place of B 1 to get a new covering \(\{B_{(4\delta )^2}(x_{k,l})\}_{l=1,2,\ldots ,N_k}\) of E ∩ B 4δ(x k) with N k(4δ)m+β < 1∕2. Thus \(\{B_{(4\delta )^2}(x_{k,l})\}_{k = 1,2,\ldots ,N, \, l=1,2,\ldots ,N_k}\) covers E with x k,l ∈ E and \(\sum _{k=1}^N N_k (4\delta )^{2 \cdot (m+\beta )} < (1/2)^2\). Repeating this argument for a total of j times, we get a finite covering of E by M balls with centers on E, radii = (4δ)j, and M(4δ)j(m+β) < (1∕2)j. Thus \(\mathcal {H}^{m+\beta }(E) \leq C(1/2)^j\) for every integer j = 1, 2, 3, …. Letting j →, we get \(\mathcal {H}^{m+\beta }(E) = 0\).

Proof (Proof of Proposition 12 )

It follows from Lemma 9 and the definition of Hausdorff dimension.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ros-Oton, X. (2021). Regularity of Free Boundaries in Obstacle Problems. In: Focardi, M., Spadaro, E. (eds) Geometric Measure Theory and Free Boundary Problems. Lecture Notes in Mathematics(), vol 2284. Springer, Cham. https://doi.org/10.1007/978-3-030-65799-4_3

Download citation

Publish with us

Policies and ethics