Skip to main content

Bronchopulmonary Dysplasia

  • Chapter
  • First Online:
Pediatric Sleep Medicine

Abstract

Bronchopulmonary dysplasia (BPD) was first described in 1969 as a chronic respiratory disease which developed after premature birth and mechanical ventilation. Now, more than 50 years later, despite remarkable advances in the care of premature infants, BPD remains one of the most significant diseases of neonatology, affecting almost 50% of extremely premature infants. Despite decades of research, clinicians struggle to prevent or treat BPD. The effects of BPD last long after infants are discharged from the neonatal intensive care unit. Former premature infants with BPD are more likely to have chronic respiratory diseases in childhood and have rehospitalizations, growth failure, and neurodevelopmental impairment than premature infants without BPD. Intense research continues regarding strategies to prevent, treat, and manage BPD from the first moments in the delivery room to home care in early childhood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stoll BJ, Hansen NI, Bell EF, Walsh MC, Carlo WA, Shankaran S, Laptook AR, Sánchez PJ, Van Meurs KP, Wyckoff M. Trends in care practices, morbidity, and mortality of extremely preterm neonates, 1993–2012. JAMA. 2015;314(10):1039–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gortner L, Misselwitz B, Milligan D, Zeitlin J, Kollée L, Boerch K, Agostino R, Van Reempts P, Chabernaud J-L, Bréart G. Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: results from the MOSAIC cohort. Neonatology. 2011;99(2):112–7.

    Article  PubMed  Google Scholar 

  3. Vom Hove M, Prenzel F, Uhlig HH, Robel-Tillig E. Pulmonary outcome in former preterm, very low birth weight children with bronchopulmonary dysplasia: a case-control follow-up at school age. J Pediatr. 2014;164(1):40–45.e44.

    Article  PubMed  Google Scholar 

  4. Doyle LW, Anderson PJ. Long-term outcomes of bronchopulmonary dysplasia. In: Seminars in fetal and neonatal medicine: 2009. Elsevier; 2009. p. 391–5.

    Google Scholar 

  5. Bhandari A, McGrath-Morrow S. Long-term pulmonary outcomes of patients with bronchopulmonary dysplasia. In: Seminars in perinatology: 2013. Elsevier; 2013. p. 132–7.

    Google Scholar 

  6. Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia. N Engl J Med. 1967;276(7):357–68.

    Article  PubMed  Google Scholar 

  7. Bancalari E, Claure N. Definitions and diagnostic criteria for bronchopulmonary dysplasia. In: Seminars in perinatology: 2006. Elsevier; 2006. p. 164–70.

    Google Scholar 

  8. Baraldi E, Carraro S, Filippone M. Bronchopulmonary dysplasia: definitions and long-term respiratory outcome. Early Hum Dev. 2009;85(10):S1–3.

    Article  PubMed  Google Scholar 

  9. Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F, Kim BI. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997;177(4):825–30.

    Article  CAS  PubMed  Google Scholar 

  10. Yoon BH, Romero R, Kim KS, Park JS, Ki SH, Kim BI, Jun JK. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1999;181(4):773–9.

    Article  CAS  PubMed  Google Scholar 

  11. Groneck P, Götze-Speer B, Speer CP, Oppermann M, Eiffert H. Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high-risk preterm neonates. Pediatrics. 1994;93(5):712–8.

    CAS  PubMed  Google Scholar 

  12. Speer C. Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol. 2006;26(S1):S57.

    Article  CAS  PubMed  Google Scholar 

  13. Grigg JM, Barber A, Silverman M. Increased levels of bronchoalveolar lavage fluid interleukin-6 in preterm ventilated infants after prolonged rupture of membranes. Am Rev Respir Dis. 1992;145(4 Pt 1):782–6.

    Article  CAS  PubMed  Google Scholar 

  14. Todd DA, Earl M, Lloyd J, Greenberg M, John E. Cytological changes in endotracheal aspirates associated with chronic lung disease. Early Hum Dev. 1998;51(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  15. Mirro R, Armstead W, Leffler C. Increased airway leukotriene levels in infants with severe bronchopulmonary dysplasia. Am J Dis Child. 1990;144(2):160–1.

    CAS  PubMed  Google Scholar 

  16. Jónsson B, Tullus K, Brauner A, Lu Y, Noack G. Early increase of TNFα and IL-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants. Arch Dis Child Fetal Neonatal Ed. 1997;77(3):F198–201.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Clement A, Chadelat K, Sardet A, Grimfeld A, Tournier G. Alveolar macrophage status in bronchopulmonary dysplasia. Pediatr Res. 1988;23(5):470.

    Article  CAS  PubMed  Google Scholar 

  18. Jobe AH, Ikegami M. Antenatal infection/inflammation and postnatal lung maturation and injury. Respir Res. 2001;2(1):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Philip AG. Oxygen plus pressure plus time: the etiology of bronchopulmonary dysplasia. Pediatrics. 1975;55(1):44–50.

    CAS  PubMed  Google Scholar 

  20. Hodgman JE, Mikity VG, Tatter D, Cleland RS. Chronic respiratory distress in the premature infant: Wilson-Mikity syndrome. Pediatrics. 1969;44(2):179–95.

    CAS  PubMed  Google Scholar 

  21. Perrone S, Bracciali C, Di Virgilio N, Buonocore G. Oxygen use in neonatal care: a two-edged sword. Front Pediatr. 2017;4:143.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Resch B, Gutmann C, Reiterer F, Luxner J, Urlesberger B. Neonatal Ureaplasma urealyticum colonization increases pulmonary and cerebral morbidity despite treatment with macrolide antibiotics. Infection. 2016;44(3):323–7.

    Article  CAS  PubMed  Google Scholar 

  23. Lowe J, Watkins WJ, Edwards MO, Spiller OB, Jacqz-Aigrain E, Kotecha SJ, Kotecha S. Association between pulmonary ureaplasma colonization and bronchopulmonary dysplasia in preterm infants: updated systematic review and meta-analysis. Pediatr Infect Dis J. 2014;33(7):697–702.

    Article  PubMed  Google Scholar 

  24. Viscardi RM, Kallapur SG. Role of Ureaplasma respiratory tract colonization in bronchopulmonary dysplasia pathogenesis: current concepts and update. Clin Perinatol. 2015;42(4):719–38.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moss TJ, Nitsos I, Knox CL, Polglase GR, Kallapur SG, Ikegami M, Jobe AH, Newnham JP. Ureaplasma colonization of amniotic fluid and efficacy of antenatal corticosteroids for preterm lung maturation in sheep. Am J Obstet Gynecol. 2009;200(1):96.e1–6.

    Article  CAS  Google Scholar 

  26. Jobe AH. Antenatal associations with lung maturation and infection. J Perinatol. 2005;25(S2):S31.

    Article  PubMed  Google Scholar 

  27. Kramer BW, Kallapur S, Newnham J, Jobe AH. Prenatal inflammation and lung development. In: Seminars in fetal and neonatal medicine: 2009. Elsevier; 2009. p. 2–7.

    Google Scholar 

  28. Kallapur SG, Kramer BW, Knox CL, Berry CA, Collins JJ, Kemp MW, Nitsos I, Polglase GR, Robinson J, Hillman NH. Chronic fetal exposure to Ureaplasma parvum suppresses innate immune responses in sheep. J Immunol. 2011;187(5):2688–95.

    Article  CAS  PubMed  Google Scholar 

  29. Nair V, Loganathan P, Soraisham AS. Azithromycin and other macrolides for prevention of bronchopulmonary dysplasia: a systematic review and meta-analysis. Neonatology. 2014;106(4):337–47.

    Article  CAS  PubMed  Google Scholar 

  30. Kallapur SG, Kramer BW, Jobe AH. Ureaplasma and BPD. In: Seminars in perinatology: 2013. Elsevier; 2013. p. 94–101.

    Google Scholar 

  31. Tramper J, Zhang H, Foglia EE, Dysart KC, Padula MA, Sullivan KV, Jensen EA. The association between positive tracheal aspirate cultures and adverse pulmonary outcomes in preterm infants with severe Bronchopulmonary dysplasia. Am J Perinatol. 2017;34(01):96–104.

    Article  PubMed  Google Scholar 

  32. Husain AN, Siddiqui NH, Stocker JT. Pathology of arrested acinar development in postsurfactant bronchopulmonary dysplasia. Hum Pathol. 1998;29(7):710–7.

    Article  CAS  PubMed  Google Scholar 

  33. Coalson JJ. Pathology of new bronchopulmonary dysplasia. In: Seminars in neonatology: 2003. Elsevier; 2003. p. 73–81.

    Google Scholar 

  34. Coalson JJ. Pathology of bronchopulmonary dysplasia. In: Seminars in perinatology: 2006. Elsevier; 2006. p. 179–84.

    Google Scholar 

  35. Coalson JJ, Winter V, deLemos RA. Decreased alveolarization in baboon survivors with bronchopulmonary dysplasia. Am J Respir Crit Care Med. 1995;152(2):640–6.

    Article  CAS  PubMed  Google Scholar 

  36. Fiaturi N, Russo JW, Nielsen HC, Castellot JJ. CCN5 in alveolar epithelial proliferation and differentiation during neonatal lung oxygen injury. J Cell Commun Signal. 2018;12(1):217–29.

    Article  PubMed  PubMed Central  Google Scholar 

  37. D’Alessandro A, Nozik-Grayck E, Stenmark KR. Identification of infants at risk for chronic lung disease at birth. Potential for a personalized approach to disease prevention. In: American Thoracic Society; 2017.

    Google Scholar 

  38. Jobe AH, Steinhorn R. Can we define bronchopulmonary dysplasia? J Pediatr. 2017;188:19–23.

    Article  PubMed  Google Scholar 

  39. Svenningsen N, Björklund L, Lindroth M. Changing trend in perinatal management and outcome of extremely low birthweight (ELBW) infants. Acta Paediatr. 1997;86(S422):89–91.

    Article  Google Scholar 

  40. Davis PG, Morley CJ, Owen LS. Non-invasive respiratory support of preterm neonates with respiratory distress: continuous positive airway pressure and nasal intermittent positive pressure ventilation. In: Seminars in fetal and neonatal medicine: 2009. Elsevier; 2009. p. 14–20.

    Google Scholar 

  41. Dunn MS, Kaempf J, de Klerk A, de Klerk R, Reilly M, Howard D, Ferrelli K, O'Conor J, Soll RF, Group VONDS. Randomized trial comparing 3 approaches to the initial respiratory management of preterm neonates. Pediatrics. 2011;128(5):e1069–76.

    Article  PubMed  Google Scholar 

  42. Carlo W. Gentle ventilation: the new evidence from the SUPPORT, COIN, VON, CURPAP, Colombian Network, and Neocosur Network trials. Early Hum Dev. 2012;88:S81–3.

    Article  PubMed  Google Scholar 

  43. Kennedy KA, Cotten CM, Watterberg KL, Carlo WA. Prevention and management of bronchopulmonary dysplasia: lessons learned from the neonatal research network. In: Seminars in perinatology: 2016: Elsevier; 2016. p. 348–55.

    Google Scholar 

  44. SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970–9.

    Article  PubMed Central  Google Scholar 

  45. Hascoet J-M, Espagne S, Hamon I. CPAP and the preterm infant: lessons from the COIN trial and other studies. Early Hum Dev. 2008;84(12):791–3.

    Article  PubMed  Google Scholar 

  46. Pfister RH, Soll RF. Initial respiratory support of preterm infants: the role of CPAP, the INSURE method, and noninvasive ventilation. Clin Perinatol. 2012;39(3):459–81.

    Article  PubMed  Google Scholar 

  47. Bahadue FL, Soll R. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev. 2012;11(11):CD001456.

    PubMed  Google Scholar 

  48. Soll RF, Pfister RH. Evidence-based delivery room care of the very low birth weight infant. Neonatology. 2011;99(4):349–54.

    Article  PubMed  Google Scholar 

  49. Soll RF. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Neonatology. 2013;104(2):124.

    Article  CAS  Google Scholar 

  50. Polin RA, Carlo WA. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 2014;133(1):156–63.

    Article  PubMed  Google Scholar 

  51. Thome UH, Carlo WA. Permissive hypercapnia. In: Seminars in neonatology: 2002. Elsevier; 2002. p. 409–19.

    Google Scholar 

  52. Thome UH, Genzel-Boroviczeny O, Bohnhorst B, Schmid M, Fuchs H, Rohde O, Avenarius S, Topf H-G, Zimmermann A, Faas D. Permissive hypercapnia in extremely low birthweight infants (PHELBI): a randomised controlled multicentre trial. Lancet Respir Med. 2015;3(7):534–43.

    Article  PubMed  Google Scholar 

  53. Keszler M, Sant’Anna G. Mechanical ventilation and bronchopulmonary dysplasia. Clin Perinatol. 2015;42(4):781–96.

    Article  PubMed  Google Scholar 

  54. Peng W, Zhu H, Shi H, Liu E. Volume-targeted ventilation is more suitable than pressure-limited ventilation for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2014;99(2):F158–65.

    Article  PubMed  Google Scholar 

  55. Keszler M, Donn SM, Bucciarelli RL, Alverson DC, Hart M, Lunyong V, Modanlou HD, Noguchi A, Pearlman SA, Puri A. Multicenter controlled trial comparing high-frequency jet ventilation and conventional mechanical ventilation in newborn infants with pulmonary interstitial emphysema. J Pediatr. 1991;119(1):85–93.

    Article  CAS  PubMed  Google Scholar 

  56. Shetty S, Greenough A. Neonatal ventilation strategies and long-term respiratory outcomes. Early Hum Dev. 2014;90(11):735–9.

    Article  PubMed  Google Scholar 

  57. Cools F, Askie LM, Offringa M, Asselin JM, Calvert SA, Courtney SE, Dani C, Durand DJ, Gerstmann DR, Henderson-Smart DJ. Elective high-frequency oscillatory versus conventional ventilation in preterm infants: a systematic review and meta-analysis of individual patients' data. Lancet. 2010;375(9731):2082–91.

    Article  PubMed  Google Scholar 

  58. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W. Long-term effects of Caffeine therapy for Apnea of prematurity. N Engl J Med. 2007;357(19):1893–902.

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, Solimano A, Tin W. Caffeine therapy for Apnea of prematurity. N Engl J Med. 2006;354:2112–21.

    Article  CAS  PubMed  Google Scholar 

  60. Doyle LW, Schmidt B, Anderson PJ, Davis PG, Moddemann D, Grunau RE, O’brien K, Sankaran K, Herlenius E, Roberts R. Reduction in developmental coordination disorder with neonatal caffeine therapy. J Pediatr. 2014;165(2):356–359.e2.

    Article  PubMed  Google Scholar 

  61. Schmidt B, Davis PG, Roberts RS. Timing of caffeine therapy in very low birth weight infants. J Pediatr. 2014;164(5):957–8.

    Article  CAS  PubMed  Google Scholar 

  62. Dobson NR, Patel RM, Smith PB, Kuehn DR, Clark J, Vyas-Read S, Herring A, Laughon MM, Carlton D, Hunt CE. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J Pediatr. 2014;164(5):992–998.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tyson JE, Wright LL, Oh W, Kennedy KA, Mele L, Ehrenkranz RA, Stoll BJ, Lemons JA, Stevenson DK, Bauer CR. Vitamin a supplementation for extremely-low-birth-weight infants. N Engl J Med. 1999;340(25):1962–8.

    Article  CAS  PubMed  Google Scholar 

  64. Ambalavanan N, Kennedy K, Tyson J, Carlo WA. Survey of vitamin a supplementation for extremely-low-birth-weight infants: is clinical practice consistent with the evidence? J Pediatr. 2004;145(3):304–7.

    Article  CAS  PubMed  Google Scholar 

  65. Ambalavanan N, Tyson JE, Kennedy KA, Hansen NI, Vohr BR, Wright LL, Carlo WA. Vitamin A supplementation for extremely low birth weight infants: outcome at 18 to 22 months. Pediatrics. 2005;115(3):e249–54.

    Article  PubMed  Google Scholar 

  66. Darlow BA, Graham P, Rojas-Reyes MX. Vitamin A supplementation to prevent mortality and short-and long-term morbidity in very low birth weight infants. Cochrane Database Syst Rev. 2016;2016(8):CD000501.

    PubMed Central  Google Scholar 

  67. Bassler D, Plavka R, Shinwell ES, Hallman M, Jarreau P-H, Carnielli V, Van den Anker JN, Meisner C, Engel C, Schwab M. Early inhaled budesonide for the prevention of bronchopulmonary dysplasia. N Engl J Med. 2015;373(16):1497–506.

    Article  CAS  PubMed  Google Scholar 

  68. Nakamura T, Yonemoto N, Nakayama M, Hirano S, Aotani H, Kusuda S, Fujimura M, Tamura M. Early inhaled steroid use in extremely low birthweight infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2016;101(6):F552–6.

    Article  PubMed  Google Scholar 

  69. Roberts D, Brown J, Medley N, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2017;3(3):CD004454.

    PubMed  Google Scholar 

  70. Eichenwald EC, Stark AR. Are postnatal steroids ever justified to treat severe bronchopulmonary dysplasia? Arch Dis Child Fetal Neonatal Ed. 2007;92(5):F334–7.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment in the first week of life for preventing bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(3):217–24.

    Article  CAS  PubMed  Google Scholar 

  72. Doyle LW, Ehrenkranz RA, Halliday HL. Dexamethasone treatment after the first week of life for bronchopulmonary dysplasia in preterm infants: a systematic review. Neonatology. 2010;98(4):289–96.

    Article  CAS  PubMed  Google Scholar 

  73. O’shea TM, Kothadia JM, Klinepeter KL, Goldstein DJ, Jackson BG, Weaver RG. Randomized placebo-controlled trial of a 42-day tapering course of dexamethasone to reduce the duration of ventilator dependency in very low birth weight infants: outcome of study participants at 1-year adjusted age. Pediatrics. 1999;104(1):15–21.

    Article  PubMed  Google Scholar 

  74. Halliday HL. Update on postnatal steroids. Neonatology. 2017;111(4):415–22.

    Article  PubMed  Google Scholar 

  75. Shinwell ES, Lerner-Geva L, Lusky A, Reichman B. Less postnatal steroids, more bronchopulmonary dysplasia: a population-based study in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F30–3.

    Article  CAS  PubMed  Google Scholar 

  76. Laughon MM, Langer JC, Bose CL, Smith PB, Ambalavanan N, Kennedy KA, Stoll BJ, Buchter S, Laptook AR, Ehrenkranz RA. Prediction of bronchopulmonary dysplasia by postnatal age in extremely premature infants. Am J Respir Crit Care Med. 2011;183(12):1715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Baud O, Trousson C, Biran V, Leroy E, Mohamed D, Alberti C. Association between early low-dose hydrocortisone therapy in extremely preterm neonates and neurodevelopmental outcomes at 2 years of age. JAMA. 2017;317(13):1329–37.

    Article  CAS  PubMed  Google Scholar 

  78. Ofman G, Perez M, Farrow KN. Early low-dose hydrocortisone: is the neurodevelopment affected? J Perinatol. 2018;38(6):636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Parikh NA, Kennedy KA, Lasky RE, Tyson JE. Neurodevelopmental outcomes of extremely preterm infants randomized to stress dose hydrocortisone. PLoS One. 2015;10(9):e0137051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Onland W, Offringa M, Cools F, De Jaegere AP, Rademaker K, Blom H, Cavatorta E, Debeer A, Dijk PH, van Heijst AF. Systemic hydrocortisone to prevent bronchopulmonary dysplasia in preterm infants (the SToP-BPD study); a multicenter randomized placebo controlled trial. BMC Pediatr. 2011;11(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Cheong JL, Doyle LW. An update on pulmonary and neurodevelopmental outcomes of bronchopulmonary dysplasia. In: Seminars in perinatology: 2018. Elsevier; 2018.

    Google Scholar 

  82. Fawke J, Lum S, Kirkby J, Hennessy E, Marlow N, Rowell V, Thomas S, Stocks J. Lung function and respiratory symptoms at 11 years in children born extremely preterm: the EPICure study. Am J Respir Crit Care Med. 2010;182(2):237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hennessy EM, Bracewell M, Wood N, Wolke D, Costeloe K, Gibson A, Marlow N, Group ES. Respiratory health in pre-school and school age children following extremely preterm birth. Arch Dis Child. 2008;93(12):1037–43.

    Article  CAS  PubMed  Google Scholar 

  84. Greenough A. Long-term pulmonary outcome in the preterm infant. Neonatology. 2008;93(4):324–7.

    Article  PubMed  Google Scholar 

  85. May C, Kennedy C, Milner AD, Rafferty GF, Peacock JL, Greenough A. Lung function abnormalities in infants developing bronchopulmonary dysplasia. Arch Dis Child. 2011;96(11):1014–9.

    Article  PubMed  Google Scholar 

  86. Greenough A, Alexander J, Burgess S, Chetcuti P, Cox S, Lenney W, Turnbull F, Shaw N, Woods A, Boorman J. Home oxygen status and rehospitalisation and primary care requirements of infants with chronic lung disease. Arch Dis Child. 2002;86(1):40–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Greenough A, Cox S, Alexander J, Lenney W, Turnbull F, Burgess S, Chetcuti P, Shaw N, Woods A, Boorman J. Health care utilisation of infants with chronic lung disease, related to hospitalisation for RSV infection. Arch Dis Child. 2001;85(6):463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gibson A-M, Doyle LW. Respiratory outcomes for the tiniest or most immature infants. In: Seminars in fetal and neonatal medicine: 2014. Elsevier; 2014. p. 105–11.

    Google Scholar 

  89. Majnemer A, Riley P, Shevell M, Birnbaum R, Greenstone H, Coates AL. Severe bronchopulmonary dysplasia increases risk for later neurological and motor sequelae in preterm survivors. Dev Med Child Neurol. 2000;42(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  90. Anderson PJ, Doyle LW. Neurodevelopmental outcome of bronchopulmonary dysplasia. In: Seminars in perinatology: 2006. Elsevier; 2006. p. 227–32.

    Google Scholar 

  91. Hintz SR, Kendrick DE, Stoll BJ, Vohr BR, Fanaroff AA, Donovan EF, Poole WK, Blakely ML, Wright L, Higgins R. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics. 2005;115(3):696–703.

    Article  PubMed  Google Scholar 

  92. Van Marter LJ, Kuban KC, Allred E, Bose C, Dammann O, O’shea M, Laughon M, Ehrenkranz RA, Schreiber MD, Karna P. Does bronchopulmonary dysplasia contribute to the occurrence of cerebral palsy among infants born before 28 weeks of gestation? Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F20–9.

    Article  PubMed  Google Scholar 

  93. Natarajan G, Pappas A, Shankaran S, Kendrick DE, Das A, Higgins RD, Laptook AR, Bell EF, Stoll BJ, Newman N. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev. 2012;88(7):509–15.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Short EJ, Klein NK, Lewis BA, Fulton S, Eisengart S, Kercsmar C, Baley J, Singer LT. Cognitive and academic consequences of bronchopulmonary dysplasia and very low birth weight: 8-year-old outcomes. Pediatrics. 2003;112(5):e359.

    Article  PubMed  Google Scholar 

  95. Vohr BR, Bell EF, Oh W. Infants with bronchopulmonary dysplasia: growth pattern and neurologic and developmental outcome. Am J Dis Child. 1982;136(5):443–7.

    Article  CAS  PubMed  Google Scholar 

  96. Moyer-Mileur LJ, Nielson DW, Pfeffer KD, Witte MK, Chapman DL. Eliminating sleep-associated hypoxemia improves growth in infants with bronchopulmonary dysplasia. Pediatrics. 1996;98(4):779–83.

    CAS  PubMed  Google Scholar 

  97. Martin RJ, Abu-Shaweesh JM. Control of breathing and neonatal apnea. Neonatology. 2005;87(4):288–95.

    Article  Google Scholar 

  98. Polin RA, Fox WW, Abman SH. Fetal and neonatal physiology E-book. Elsevier Health Sciences; 2011.

    Google Scholar 

  99. Rhein LM, Dobson NR, Darnall RA, Corwin MJ, Heeren TC, Poets CF, McEntire BL, Hunt CE, Caffeine Pilot Study G. Effects of caffeine on intermittent hypoxia in infants born prematurely: a randomized clinical trial. JAMA Pediatr. 2014;168(3):250–7.

    Article  PubMed  Google Scholar 

  100. Eichenwald EC, Aina A, Stark AR. Apnea frequently persists beyond term gestation in infants delivered at 24 to 28 weeks. Pediatrics. 1997;100(3):354–60.

    Article  CAS  PubMed  Google Scholar 

  101. Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA, Martin RJ, Redline S. Prevalence and risk factors for sleep-disordered breathing in 8-to 11-year-old children: association with race and prematurity. J Pediatr. 2003;142(4):383–9.

    Article  PubMed  Google Scholar 

  102. Paavonen EJ, Strang-Karlsson S, Räikkönen K, Heinonen K, Pesonen A-K, Hovi P, Andersson S, Järvenpää A-L, Eriksson JG, Kajantie E. Very low birth weight increases risk for sleep-disordered breathing in young adulthood: the Helsinki Study of Very Low Birth Weight Adults. Pediatrics. 2007;120(4):778–84.

    Article  PubMed  Google Scholar 

  103. Emancipator JL, Storfer-Isser A, Taylor HG, Rosen CL, Kirchner H, Johnson NL, Zambito AM, Redline S. Variation of cognition and achievement with sleep-disordered breathing in full-term and preterm children. Arch Pediatr Adolesc Med. 2006;160(2):203–10.

    Article  PubMed  Google Scholar 

  104. Marcus CL, Meltzer LJ, Roberts RS, Traylor J, Dix J, D’ilario J, Asztalos E, Opie G, Doyle LW, Biggs SN. Long-term effects of caffeine therapy for apnea of prematurity on sleep at school age. Am J Respir Crit Care Med. 2014;190(7):791–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Tapia IE, Shults J, Doyle LW, Nixon GM, Cielo CM, Traylor J, Marcus CL. Group CfAoPSS: perinatal risk factors associated with the obstructive sleep apnea syndrome in school-aged children born preterm. Sleep. 2016;39(4):737–42.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001;163(7):1723–9.

    Article  CAS  PubMed  Google Scholar 

  107. Jensen EA, et al. The diagnosis of bronchopulmonary dysplasia in very preterm infants: an evidence-based approach. Am J Respir Crit Care Med. 2019;200(6):751–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Rhein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sullivan, K., Rhein, L. (2021). Bronchopulmonary Dysplasia. In: Gozal, D., Kheirandish-Gozal, L. (eds) Pediatric Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65574-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65574-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65573-0

  • Online ISBN: 978-3-030-65574-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics