Skip to main content

Technologies in the Pediatric Sleep Lab: Present and Future

  • Chapter
  • First Online:
Pediatric Sleep Medicine

Abstract

Assessing sleep in children is challenging. While polysomnography (PSG) remains the gold standard test in laboratory, many times it has been difficult to perform polysomnography in small children. They tend to remove the electrodes and thus the failure rate of PSG in children is relatively high. Furthermore, in pediatric obstructive sleep apnea (OSA), sometimes the single laboratory finding is hypercapnia, and hence measuring CO2 is also required, which may even increase the failure rate. In addition, PSG (regardless of CO2) is relatively complex and is disadvantageous when children need several consecutive nights of assessments. Some newer technologies such as pulse transit time, sophisticated computerized analyses of ECG, or peripheral arterial tonometry are validated when assessing sleep in adults and are in various stages of development/research for usage in children (in the home environment). Other technologies such as actigraphy are excellent for children, including longitudinal assessment of nights-weeks, but the data provided are limited compared to PSG. Some even newer technologies such as snoring sound analyzers, wearable activity trackers, or even smartphone applications may open the horizon for simpler sleep assessments in children at home, although the science and data in this regard are still insufficient. This chapter deals with various technologies, reports their advantages and disadvantages, and attempts to foresee the future for sleep assessment in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMI:

Body mass index

CO2:

Carbon di Oxide

ECG:

Electrocardiogram

EEG:

Electroencephalogram

EMG:

Electromyogram

EOG:

Electrooculogram

ETCO2:

End-tidal CO2

FFT:

Fast Fourier transformation

HF:

High frequency

HRV:

Heart rate variability

HSAT:

Home sleep apnea test

LF:

Low frequency

OAHI:

Obstructive apnea hypopnea index

OSA:

Obstructive sleep apnea

PAT:

Peripheral arterial tonometry

PSG:

Overnight polysomnography

PTT:

Pulse transit time

SDB:

Sleep disordered breathing

SE:

Sleep efficiency

SL:

Sleep latency

SpO2:

Arterial pulse oxygen saturation

TCCO2:

Transcutaneous CO2

TST:

Total sleep time

VLF:

Very low frequency

References

  1. Marcus CL, Brooks LJ, Draper KA, et al. Diagnosis and management of childhood obstructive sleep apnea syndrome. Pediatrics. 2012;130(3):714–55.

    Article  Google Scholar 

  2. Aurora RN, Zak RS, Karippot A, et al. Practice parameters for the respiratory indications for polysomnography in children. Sleep. 2011;34(3):379–88.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Aurora RN, Lamm CI, Zak RS, et al. Practice parameters for the nonrespiratory indications for polysomnography and multiple sleep latency testing for children. Sleep. 2012;35(11):1467–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Iber C, Ancoli-Israel S, Chesson A, Quan SF, editors. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. 1st ed. American Academy of Sleep Medicine: Westchester; 2007.

    Google Scholar 

  5. Chesson A, Berry R, Pack A. Practice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adults. Sleep. 2003;26(7):907–13.

    Article  PubMed  Google Scholar 

  6. Iber C, Redline S, Kaplan Gilpin AM, Quan SF, Zhang L, Gottlieb DJ, et al. Polysomnography performed in the unattended home versus the attended laboratory setting – Sleep Heart Health Study Methodology. Sleep. 2004;27:536–40.

    Article  PubMed  Google Scholar 

  7. Campbell AJ, Neill AM. Home set-up polysomnography in the assessment of suspected obstructive sleep apnea. J Sleep Res. 2011;20:207–13.

    Article  PubMed  Google Scholar 

  8. Bruyneel M, Sanida C, Art G, Libert W, Cuvelier L, Paesmans M, et al. Sleep efficiency during sleep studies: results of a prospective study comparing home-based and in-hospital polysomnography. J Sleep Res. 2011;20:201–6.

    Article  PubMed  Google Scholar 

  9. Bruyneel M, Ninane V. Unattended home-based polysomnography for sleep disordered breathing: current concepts and perspectives. Sleep Med Rev. 2014;18:341–7.

    Article  PubMed  Google Scholar 

  10. Goodwin JL, Enright PL, Kaemingk KL, et al. Feasibility of using unattended polysomnography in children for research – report of the Tucson Children’s Assessment of Sleep Apnea study (TuCASA). Sleep. 2001;24:937–44.

    Article  CAS  PubMed  Google Scholar 

  11. Marcus CL, Traylor J, Bradford R, Schmidt B, et al. Feasibility of comprehensive, unattended ambulatory polysomnography in school-aged children. J Clin Sleep Med. 2014;10(8):913–8.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brockmann PE, Perez JL, Moya A. Feasibility of unattended home polysomnography in children with sleep-disordered breathing. Int J Pediatr Otorhinolaryngol. 2013;77(12):1960–4.

    Article  PubMed  Google Scholar 

  13. Kirk V, Baughn J, D’Andrea L, Friedman N, Galion A, Garetz S, Hassan F, Wrede J, Harrod CG, Malhotra RK. American Academy of Sleep Medicine position paper for the use of a home sleep apnea test for the diagnosis of OSA in children. J Clin Sleep Med. 2017;13(10):1199–203.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brouillette RT, Morielli A, Leimanis A, Waters KA, Luciano R, Ducharme FM. Nocturnal pulse oximetry as an abbreviated testing modality for pediatric obstructive sleep apnea. Pediatrics. 2000;105:405–12.

    Article  CAS  PubMed  Google Scholar 

  15. Nixon GM, Kermack AS, Davis GM, Manoukian JJ, Brown KA, Brouillette RT. Planning adenotonsillectomy in children with obstructive sleep apnea: the role of overnight oximetry. Pediatrics. 2004;113:19–25.

    Article  Google Scholar 

  16. Pavone M, Cutrera R, Verrillo E, Salerno T, Soldini S, Brouillette RT. Night-tonight consistency of at-home nocturnal pulse oximetry testing for obstructive sleep apnea in children. Pediatr Pulmonol. 2013;48:754–60.

    Article  PubMed  Google Scholar 

  17. Kaditis A, Kheirandish-Gozal L, Gozal D. Pediatric OSAS: oximetry can provide answers when polysomnography is not available. Sleep Med Rev. 2016;27:96–105.

    Article  PubMed  Google Scholar 

  18. Kaditis AG, Alonso-Alvarez ML, Boudewyns A, et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: diagnosis and management. Eur Respir J. 2016;47(1):69–94.

    Article  PubMed  Google Scholar 

  19. Bertoni D, Isaiah A. Towards patient-centered diagnosis of pediatric obstructive sleep apnea – a review of biomedical engineering strategies. Expert Rev Med Devices. 2019;16(7):617–29. https://doi.org/10.1080/17434440.2019.1626233. Epub 2019 Jun 8. Review.

    Article  CAS  PubMed  Google Scholar 

  20. Xu Z, Gutiérrez-Tobal GC, Wu Y, Kheirandish-Gozal L, Ni X, Hornero R, Gozal D. Cloud algorithm-driven oximetry-based diagnosis of obstructive sleep apnea in symptomatic habitually snoring children. Eur Respir J. 2019;53(2):1801788. https://doi.org/10.1183/13993003.01788-2018. Print 2019 Feb. PubMed PMID: 30487202.

    Article  PubMed  Google Scholar 

  21. Al-Angari HM, Sahakian AV. Automated recognition of obstructive sleep apnea syndrome using support vector machine classifier. IEEE Trans Inf Technol Biomed. 2012;16(3):463–8. https://doi.org/10.1109/TITB.2012.2185809. Epub 2012 Jan 24. PubMed PMID: 22287247; PubMed Central PMCID: PMC4487628.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Twiss J, Chawla J, Davey MJ, Edwards EA, Elder D, Francis A, Griffiths MA, Pamula Y, Suresh S, Verginis N, Nixon GM. Overnight oximetry for evaluating paediatric obstructive sleep apnea: technical specifications and interpretation guidelines. J Paediatr Child Health. 2019;55(10):1279. https://doi.org/10.1111/jpc.14586. PubMed PMID: 31629377.

    Article  PubMed  Google Scholar 

  23. Garde A, Hoppenbrouwer X, Dehkordi P, Zhou G, Rollinson AU, Wensley D, Dumont GA, Ansermino JM. Pediatric pulse oximetry-based OSA screening at different thresholds of the apnea-hypopnea index with an expression of uncertainty for inconclusive classifications. Sleep Med. 2019;60:45–52. https://doi.org/10.1016/j.sleep.2018.08.027. Epub 2018 Sep 22. PubMed PMID: 31288931.

    Article  PubMed  Google Scholar 

  24. Gerdung CA, Adeleye A, Kirk VG. Noninvasive monitoring of CO2 during polysomnography: a review of the recent literature. Curr Opin Pulm Med. 2016;22(6):527–34.

    Article  CAS  PubMed  Google Scholar 

  25. Paruthi S, Rosen CL, Wang R, Weng J, Marcus CL, Chervin RD, Stanley JJ, Katz ES, Amin R, Redline S. End-tidal carbon dioxide measurement during pediatric polysomnography: signal quality, association with apnea severity, and prediction of neurobehavioral outcomes. Sleep. 2015;38(11):1719–26.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus CL, Vaughn BV for the American Academy of Sleep Medicine. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications, Version 2.0. www.aasmnet.org. American Academy of Sleep Medicine: Darien, IL; 2012.

    Google Scholar 

  27. American Academy of Sleep Medicine. International classification of sleep disorders. 3rd ed. Darien: American Academy of Sleep Medicine; 2014.

    Google Scholar 

  28. Michael J, Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. Sleep neurophysiological dynamics through the lens of multitaper spectral analysis. Physiology (Bethesda). 2017;32(1):60–92.

    Google Scholar 

  29. Schramm D, Scheidt B, Hubler A, Frenzel J, Holthausen K, Breidbach O. Spectral analysis of electroencephalogram during sleep-related apneas in pre-term and term born infants in the first weeks of life. Clin Neurophysiol. 2000;111(10):1788–91.

    Article  CAS  PubMed  Google Scholar 

  30. Bandla H, Gozal D. Dynamic changes in EEG spectra during obstructive apnea in children. Pediatr Pulmonol. 2000;29:359–65.

    Article  CAS  PubMed  Google Scholar 

  31. Jenni O, Carskadon M. Spectral analysis of the sleep electroencephalogram during adolescence. Sleep. 2004;27(4):774–83.

    PubMed  Google Scholar 

  32. Yang JSC, Nicholas CL, Nixon GM, Davey MJ, Anderson V, Walker AM, Trinder JA, Horne RSC. Determining sleep quality in children with sleep disordered breathing: EEG spectral analysis compared with conventional polysomnography. Sleep. 2010;33(9):1165–72.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yang JSC, Nicholas CL, Nixon GM, Davey MJ, Anderson V, Walker AM, Trinder JA, Horne RSC. EEG spectral analysis of apnoeic events confirms visual scoring in childhood sleep disordered breathing. Sleep Breath. 2012;16:491–7.

    Article  PubMed  Google Scholar 

  34. Pillar G, Schuscheim G, Weiss R, Malhotra A, McCowen KC, Shlitner A, Peled N, Shehadeh N. Interactions between hypoglycemia and sleep architecture in children with type 1 diabetes mellitus. J Pediatr. 2003;142(2):163–8.

    Article  PubMed  Google Scholar 

  35. Meltzer LJ, Montgomery-Downs HE, Insana SP, Walsh CM. Use of actigraphy for assessment in pediatric sleep research. Sleep Med Rev. 2012;16:463–75.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 1994;17:201–7.

    Article  CAS  PubMed  Google Scholar 

  37. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep wake identification from wrist activity. Sleep. 1992;15:461–9.

    Article  CAS  PubMed  Google Scholar 

  38. Galland B, Meredith-Jones K, Terrill P, Taylor R. Challenges and emerging technologies within the field of pediatric Actigraphy. Front Psych. 2014;5:99.

    Google Scholar 

  39. Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL, Carden KA. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J Clin Sleep Med. 2018;14(7):1209–30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Smith MT, McCrae CS, Cheung J, Martin JL, Harrod CG, Heald JL, Carden KA. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: an American Academy of Sleep Medicine clinical practice guideline. J Clin Sleep Med. 2018;14(7):1231–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:1482–92.

    Article  Google Scholar 

  42. Villa MP, Calcagnini G, Pagani J, Paggi B, Massa F, Ronchetti R. Effects of sleep stage and age on short-term heart rate variability during sleep in healthy infants and children. Chest. 2000;117:460–6.

    Article  CAS  PubMed  Google Scholar 

  43. Michels N, Clays E, De Buyzere M, Vanaelst B, De Henauw S, Sioen I. Children’s sleep and autonomic function: low sleep quality has an impact on heart rate variability. Sleep. 2013;36(12):1939–46.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12:197–210.

    Article  PubMed  Google Scholar 

  45. Sampei M, Murata K, Dakeishi M, Wood DC. Cardiac autonomic hypofunction in preschool children with short nocturnal sleep. Tohoku J Exp Med. 2006;208:235–42.

    Article  PubMed  Google Scholar 

  46. Harder R, Malow BA, Goodpaster RL, Iqbal F, Halbower A, Goldman SE, Fawkes DB, Wang L, Shi Y, Baudenbacher F, Diedrich A. Heart rate variability during sleep in children with autism spectrum disorder. Clin Auton Res. 2016;26(6):423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rodríguez-Colón SM, He F, Bixler EO, Fernandez-Mendoza J, Vgontzas AN, Calhoun S, Zheng ZJ, Liao D. Sleep variability and cardiac autonomic modulation in adolescents - Penn State Child Cohort (PSCC) study. Sleep Med. 2015;16(1):67–72.

    Article  PubMed  Google Scholar 

  48. Rodríguez-Colón SM, He F, Bixler EO, Fernandez-Mendoza J, Vgontzas AN, Calhoun S, Zheng ZJ, Liao D. Sleep variability and cardiac autonomic modulation in adolescents - Penn State Child Cohort (PSCC) study. Sleep Med. 2015;16(1):67–72. https://doi.org/10.1016/j.sleep.2014.10.007. Epub 2014 Nov 4. PubMed PMID: 25555635; PubMed Central PMCID: PMC4306639.

    Article  PubMed  Google Scholar 

  49. Lázaro J, Gil E, Vergara JM, Laguna P. Pulse rate variability analysis for discrimination of sleep-apnea-related decreases in the amplitude fluctuations of pulse photoplethysmographic signal in children. IEEE J Biomed Health Inform. 2014;18(1):240–6. https://doi.org/10.1109/JBHI.2013.2267096. PubMed PMID: 24403422.

    Article  PubMed  Google Scholar 

  50. Dehkordi P, Garde A, Karlen W, Wensley D, Ansermino JM, Dumont GA. Pulse rate variability compared with heart rate variability in children with and without sleep disordered breathing. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6563–6. https://doi.org/10.1109/EMBC.2013.6611059.

    Article  Google Scholar 

  51. Kwok KL, Yung TC, Ng DK, Chan CH, Lau WF, Fu YM. Heart rate variability in childhood obstructive sleep apnea. Pediatr Pulmonol. 2011;46(3):205–10. https://doi.org/10.1002/ppul.21268. Epub 2011 Jan 18. PubMed PMID: 21246757.

    Article  PubMed  Google Scholar 

  52. Sun J, Li X, Guo J, Han F, Zhang H. Identification of obstructive sleep apnea syndrome by ambulatory electrocardiography: clinical evaluation of time-domain and frequency-domain analyses of heart rate variability in Chinese patients. Cell Biochem Biophys. 2011;59(3):165–70. https://doi.org/10.1007/s12013-010-9128-6. PubMed PMID: 20960073.

    Article  CAS  PubMed  Google Scholar 

  53. Nazeran H, Krishnam R, Chatlapalli S, Pamula Y, Haltiwanger E, Cabrera S. Nonlinear dynamics analysis of heart rate variability signals to detect sleep disordered breathing in children. Conf Proc IEEE Eng Med Biol Soc. 2006;1:3873–8. PubMed PMID: 17946587.

    Article  Google Scholar 

  54. Zapanta L, Poon CS, White DP, Marcus CL, Katz ES. Heart rate chaos in obstructive sleep apnea in children. Conf Proc IEEE Eng Med Biol Soc. 2004;6:3889–92. PubMed PMID: 17271146.

    Google Scholar 

  55. Montesano M, Miano S, Paolino MC, Massolo AC, Ianniello F, Forlani M, Villa MP. Autonomic cardiovascular tests in children with obstructive sleep apnea syndrome. Sleep. 2010;33(10):1349–55.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kwok KL, Yung TC, Ng DK, Chan CH, Lau WF, Fu YM. Heart rate variability in childhood obstructive sleep apnea. Pediatr Pulmonol. 2011;46(3):205–10.

    Article  PubMed  Google Scholar 

  57. Gong X, Huang L, Liu X, Li C, Mao X, Liu W, Huang X, Chu H, Wang Y, Wu W, Lu J. Correlation analysis between polysomnography diagnostic indices and heart rate variability parameters among patients with obstructive sleep apnea hypopnea syndrome. PLoS One. 2016;11(6):e0156628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation. 1998;98(6):547–55. PMID:9714112.

    Article  CAS  PubMed  Google Scholar 

  59. Walter LM, Nixon GM, Davey MJ, Anderson V, Walker AM, Horne RS. Autonomic dysfunction in children with sleep disordered breathing. Sleep Breath. 2013;17(2):605–13.

    Article  PubMed  Google Scholar 

  60. Nisbet LC, Yiallourou SR, Nixon GM, Biggs SN, Davey MJ, Trinder J, Walter LM, Horne RS. Nocturnal autonomic function in preschool children with sleep-disordered breathing. Sleep Med. 2013;14(12):1310–6.

    Article  PubMed  Google Scholar 

  61. Muzumdar HV, Sin S, Nikova M, Gates G, Kim D, Arens R. Changes in heart rate variability after adenotonsillectomy in children with obstructive sleep apnea. Chest. 2011;139(5):1050–9.

    Article  PubMed  Google Scholar 

  62. Lázaro J, Gil E, Vergara JM, Laguna P. Pulse rate variability analysis for discrimination of sleep-apnea-related decreases in the amplitude fluctuations of pulse photoplethysmographic signal in children. IEEE J Biomed Health Inform. 2014;18(1):240–6.

    Article  PubMed  Google Scholar 

  63. Bar A, Pillar G, Dvir I, Sheffy J, Schnall RP, Lavie P. Evaluation of a portable device based on peripheral arterial tone for unattended home sleep studies. Chest. 2003;123(3):695–703.

    Article  PubMed  Google Scholar 

  64. Hedner J, Pillar G, Pittman SD, Zou D, Grote L, White DP. A novel adaptive wrist actigraphy algorithm for sleep-wake assessment in sleep apnea patients. Sleep. 2004;27(8):1560–6.

    Article  PubMed  Google Scholar 

  65. Herscovici S, Pe'er A, Papyan S, Lavie P. Detecting REM sleep from the finger: an automatic REM sleep algorithm based on peripheral arterial tone (PAT) and actigraphy. Physiol Meas. 2007;28(2):129–40.

    Article  PubMed  Google Scholar 

  66. Lavie P, Schnall RP, Sheffy J, Shlitner A. Peripheral vasoconstriction during REM sleep detected by a new plethysmographic method. Nat Med. 2000;6(6):606.

    Article  CAS  PubMed  Google Scholar 

  67. Bresler M, Sheffy K, Pillar G, Preiszler M, Herscovici S. Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry. Physiol Meas. 2008;29(5):571–84.

    Article  PubMed  Google Scholar 

  68. Hedner J, White DP, Malhotra A, Herscovici S, Pittman SD, Zou D, Grote L, Pillar G. Sleep staging based on autonomic signals: a multi-center validation study. J Clin Sleep Med. 2011;7(3):301–6.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pillar G, Bar A, Shlitner A, Schnall R, Sheffy J, Lavie P. Autonomic arousal index. Sleep. 2002;25(5):543–9.

    Article  PubMed  Google Scholar 

  70. Pillar G, Bar A, Betito M, et al. An automatic ambulatory device for detection of AASM defined arousals from sleep: the WP100. Sleep Med. 2003;4(3):207–12.

    Article  PubMed  Google Scholar 

  71. Penzel T, Fricke R, Jerrentrup A, Peter JH, Vogelmeier C. Peripheral arterial tonometry for the diagnosis of obstructive sleep apnea. Biomed Tech (Berl). 2002;47(suppl 1/pt 1):315–7.

    Article  Google Scholar 

  72. Ayas NT, Pittman S, MacDonald M, White DP. Assessment of a wrist-worn device in the detection of obstructive sleep apnea. Sleep Med. 2003;4(5):435–42.

    Article  PubMed  Google Scholar 

  73. Penzel T, Kesper K, Pinnow I, Becker HF, Vogelmeier C. Peripheral arterial tonometry, oximetry and actigraphy for ambulatory recording of sleep apnea. Physiol Meas. 2004;25(4):1025–36.

    Article  PubMed  Google Scholar 

  74. Pittman SD, Ayas NT, MacDonald MM, Malhotra A, Fogel RB, White DP. Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep. 2004;27(5):923–33.

    Article  PubMed  Google Scholar 

  75. Zou D, Grote L, Peker Y, Lindblad U, Hedner J. Validation a portable monitoring device for sleep apnea diagnosis in a population based cohort using synchronized home polysomnography. Sleep. 2006;29(3):367–74.

    Article  PubMed  Google Scholar 

  76. Pang KP, Gourin CG, Terris DJ. A comparison of polysomnography and the WatchPAT in the diagnosis of obstructive sleep apnea. Otolaryngol Head Neck Surg. 2007;137(4):665–8.

    Article  PubMed  Google Scholar 

  77. Choi JH, Kim EJ, Kim YS, et al. Validation study of portable device for the diagnosis of obstructive sleep apnea according to the new AASM scoring criteria: Watch-PAT 100. Acta Otolaryngol. 2010;130(7):838–43.

    Article  PubMed  Google Scholar 

  78. Yuceege M, Firat H, Demir A, Ardic S. Reliability of the Watch-PAT 200 in detecting sleep apnea in highway bus drivers. J Clin Sleep Med. 2013;9(4):339–44.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weimin L, Rongguang W, Dongyan H, Xiaoli L, Wei J, Shiming Y. Assessment of a portable monitoring device WatchPAT 200 in the diagnosis of obstructive sleep apnea. Eur Arch Otorhinolaryngol. 2013;270(12):3099–105.

    Article  PubMed  Google Scholar 

  80. Tauman R, O'Brien LM, Mast BT, Holbrook CR, Gozal D. Peripheral arterial tonometry events and electroencephalographic arousals in children. Sleep. 2004;27(3):502–6.

    Article  PubMed  Google Scholar 

  81. Serra A, Cocuzza S, Maiolino L, et al. The watch-pat in pediatrics sleep disordered breathing: pilot study on children with negative nocturnal pulse oximetry. Int J Pediatr Otorhinolaryngol. 2017;97:245–50.

    Article  PubMed  Google Scholar 

  82. O’Brien LM, Gozal D. Potential usefulness of noninvasive autonomic monitoring in recognition of arousals in normal healthy children. J Clin Sleep Med. 2007;3(1):41–7.

    PubMed  Google Scholar 

  83. Su M, Yu C, Zhang Y, Zhou Y, Mei H, Lin J, Cai X. Clinical value of portable sleep testing in children with obstructive sleep apnea syndrome. Zhonghua Er Ke Za Zhi. 2015;53(11):845–9.

    PubMed  Google Scholar 

  84. Tanphaichitr A, Thianboonsong A, Banhiran W, Vathanophas V, Ungkanont K. Watch peripheral arterial tonometry in the diagnosis of pediatric obstructive sleep apnea. Otolaryngol Head Neck Surg. 2018;159(1):166–72.

    Article  PubMed  Google Scholar 

  85. Choi JH, Lee B, Lee JY, Kim HJ. Validating the watch-PAT for diagnosing obstructive sleep apnea in adolescents. J Clin Sleep Med. 2018;14(10):1741–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. FDA department of health & human services report, 2016. https://www.accessdata.fda.gov/cdrh_docs/pdf15/K153070.pdf.

  87. Katz ES, Lutz J, Black C, Marcus CL. Pulse transit time as a measure of arousal and respiratory effort in children with sleep-disordered breathing. Pediatr Res. 2003;53(4):580–8. Epub 2003 Feb 5.

    Article  PubMed  Google Scholar 

  88. Pépin JL, Delavie N, Pin I, Deschaux C, Argod J, Bost M, Levy P. Pulse transit time improves detection of sleep respiratory events and microarousals in children. Chest. 2005;127(3):722–30.

    Article  PubMed  Google Scholar 

  89. Foo JY, Bradley AP, Wilson SJ, Williams GR, Dakin C, Cooper DM. Screening of obstructive and central apnoea/hypopnoea in children using variability: a preliminary study. Acta Paediatr. 2006;95(5):561–4.

    Article  PubMed  Google Scholar 

  90. Brietzke SE, Katz ES, Roberson DW. Pulse transit time as a screening test for pediatric sleep-related breathing disorders. Arch Otolaryngol Head Neck Surg. 2007;133(10):980–4.

    Article  PubMed  Google Scholar 

  91. Foo JY, Wilson SJ, Lim CS. Use of the pulse transit time trend to relate tidal breathing and central respiratory events. Proc Inst Mech Eng H. 2008;222(6):1005–11.

    Article  CAS  PubMed  Google Scholar 

  92. Gil E, Bailón R, Vergara JM, Laguna P. PTT variability for discrimination of sleep apnea related decreases in the amplitude fluctuations of PPG signal in children. IEEE Trans Biomed Eng. 2010;57(5):1079–88. https://doi.org/10.1109/TBME.2009.2037734. Epub 2010 Feb 5.

    Article  PubMed  Google Scholar 

  93. Khoo MC, Wang W, Chalacheva P. Monitoring ultradian changes in cardiorespiratory control in obstructive sleep apnea syndrome. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:1487–90.

    PubMed Central  Google Scholar 

  94. Bradley J, Galland BC, Bakker JP, Tan E, Gray A, Taylor BJ, Dawes PJ. Pulse transit time and assessment of childhood sleep disordered breathing. Arch Otolaryngol Head Neck Surg. 2012;138(4):398–403.

    Article  PubMed  Google Scholar 

  95. Griffon L, Amaddeo A, Olmo Arroyo J, Tenconi R, Caggiano S, Khirani S, Fauroux B. Pulse transit time as a tool to characterize obstructive and central apneas in children. Sleep Breath. 2018;22(2):311–6.

    Article  PubMed  Google Scholar 

  96. Smith LA, Dawes PJ, Galland BC. The use of pulse transit time in pediatric sleep studies: a systematic review. Sleep Med Rev. 2018;37:4–13.

    Article  PubMed  Google Scholar 

  97. Beck R, Odeh M, Oliven A, Gavriely N. The acoustic properties of snores. Eur Respir J. 1995;8(12):2120–8.

    Article  CAS  PubMed  Google Scholar 

  98. Ben Israel N, Tarasiuk A, Zigel Y. Obstructive apnea hypopnea index estimation by analysis of nocturnal snoring signals in adults. Sleep. 2012;35(9):1299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Lee LA, Yu JF, Lo YL, Chen YS, Wang DL, Cho CM, Ni YL, Chen NH, Fang TJ, Huang CG, Li HY. Energy types of snoring sounds in patients with obstructive sleep apnea syndrome: a preliminary observation. PLoS One. 2012;7(12):e53481. https://doi.org/10.1371/journal.pone.0053481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abeyratne UR, de Silva S, Hukins C, Duce B. Obstructive sleep apnea screening by integrating snore feature classes. Physiol Meas. 2013;34(2):99–121. https://doi.org/10.1088/0967-3334/34/2/99.

    Article  CAS  PubMed  Google Scholar 

  101. Lamm C, Mandeli J, Kattan M. Evaluation of home audiotapes as an abbreviated test for obstructive sleep apnea syndrome (OSAS) in children. Pediatr Pulmonol. 1999;27(4):267–72.

    Article  CAS  PubMed  Google Scholar 

  102. Kim T, Kim JW, Lee K. Detection of sleep disordered breathing severity using acoustic biomarker and machine learning techniques. Biomed Eng Online. 2018;17(1):16. https://doi.org/10.1186/s12938-018-0448-x.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Perez-Macias JM, Jimison H, Korhonen I, Pavel M. Comparative assessment of sleep quality estimates using home monitoring technology. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:4979–82. https://doi.org/10.1109/EMBC.2014.6944742.

    Article  Google Scholar 

  104. Ferguson T, Rowlands AV, Olds T, Maher C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act. 2015;12:42. https://doi.org/10.1186/s12966-015-0201-9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. https://doi.org/10.1186/s12966-015-0314-1.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Mantua J, Gravel N, Spencer RM. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors (Basel). 2016;16(5):E646. https://doi.org/10.3390/s16050646.

    Article  Google Scholar 

  107. Cook JD, Prairie ML, Plante DT. Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: a comparison against polysomnography and wrist-worn actigraphy. J Affect Disord. 2017;217:299–305. https://doi.org/10.1016/j.jad.2017.04.030. Epub 2017 Apr 19.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Kang SG, Kang JM, Ko KP, Park SC, Mariani S, Weng J. Validity of a commercial wearable sleep tracker in adult insomnia disorder patients and good sleepers. J Psychosom Res. 2017;97:38–44. https://doi.org/10.1016/j.jpsychores.2017.03.009. Epub 2017 Mar 23.

    Article  PubMed  Google Scholar 

  109. de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit Charge 2™ compared with polysomnography in adults. Chronobiol Int. 2018;35(4):465–76. https://doi.org/10.1080/07420528.2017.1413578. Epub 2017 Dec 13.

    Article  PubMed  Google Scholar 

  110. Sargent C, Lastella M, Romyn G, Versey N, Miller DJ, Roach GD. How well does a commercially available wearable device measure sleep in young athletes? Chronobiol Int. 2018;35(6):754–8. https://doi.org/10.1080/07420528.2018.1466800. Epub 2018 May 11

    Article  PubMed  Google Scholar 

  111. Cook JD, Eftekari SC, Dallmann E, Sippy M, Plante DT. Ability of the Fitbit Alta HR to quantify and classify sleep in patients with suspected central disorders of hypersomnolence: a comparison against polysomnography. J Sleep Res. 2018;8:e12789. https://doi.org/10.1111/jsr.12789.

    Article  Google Scholar 

  112. Meltzer LJ, Hiruma LS, Avis K, Montgomery-Downs H, Valentin J. Comparison of a commercial accelerometer with polysomnography and actigraphy in children and adolescents. Sleep. 2015;38(8):1323–30. https://doi.org/10.5665/sleep.4918.

    Article  PubMed  PubMed Central  Google Scholar 

  113. de Zambotti M, Baker FC, Willoughby AR, Godino JG, Wing D, Patrick K, Colrain IM. Measures of sleep and cardiac functioning during sleep using a multi-sensory commercially-available wristband in adolescents. Physiol Behav. 2016;158:143–9. https://doi.org/10.1016/j.physbeh.2016.03.006. Epub 2016 Mar 9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hakim M, Miller R, Hakim M, Tumin D, Tobias JD, Jatana KR, Raman VT. Comparison of the Fitbit® Charge and polysomnography for measuring sleep quality in children with sleep disordered breathing. Minerva Pediatr. 2018. https://doi.org/10.23736/S0026-4946.18.05333-1.

  115. Bhat S, Ferraris A, Gupta D, Mozafarian M, DeBari VA, Gushway-Henry N, Gowda SP, Polos PG, Rubinstein M, Seidu H, Chokroverty S. Is there a clinical role for smartphone sleep apps? Comparison of sleep cycle detection by a smartphone application to polysomnography. J Clin Sleep Med. 2015;11(7):709–15. https://doi.org/10.5664/jcsm.4840.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Tal A, Shinar Z, Shaki D, Codish S, Goldbart A. Validation of contact-free sleep monitoring device with comparison to polysomnography. J Clin Sleep Med. 2017;13(3):517–22. https://doi.org/10.5664/jcsm.6514.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Garde A, Dehkordi P, Karlen W, Wensley D, Ansermino JM, Dumont GA. Development of a screening tool for sleep disordered breathing in children using the phone Oximeterâ„¢. PLoS One. 2014;9(11):e112959. https://doi.org/10.1371/journal.pone.0112959. eCollection 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Garde A, Dekhordi P, Ansermino JM, Dumont GA. Identifying individual sleep apnea/hypoapnea epochs using smartphone-based pulse oximetry. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:3195–8. https://doi.org/10.1109/EMBC.2016.7591408.

    Article  Google Scholar 

  119. Patel P, Kim JY, Brooks LJ. Accuracy of a smartphone application in estimating sleep in children. Sleep Breath. 2017;21(2):505–11. https://doi.org/10.1007/s11325-016-1425-x. Epub 2016 Oct 22.

    Article  PubMed  Google Scholar 

  120. Toon E, Davey MJ, Hollis SL, Nixon GM, Horne RS, Biggs SN. Comparison of commercial wrist-based and smartphone accelerometers, actigraphy, and PSG in a clinical cohort of children and adolescents. J Clin Sleep Med. 2016;12(3):343–50. https://doi.org/10.5664/jcsm.5580.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giora Pillar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Etzioni-Friedman, T., Pillar, G. (2021). Technologies in the Pediatric Sleep Lab: Present and Future. In: Gozal, D., Kheirandish-Gozal, L. (eds) Pediatric Sleep Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65574-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65574-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65573-0

  • Online ISBN: 978-3-030-65574-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics