Skip to main content

Thermal Comfort in Urban Spaces

  • Chapter
  • First Online:
  • 1564 Accesses

Abstract

This chapter addresses urban comfort beyond thermal physiology. Demonstrating the influence of microclimatic and thermal comfort conditions, an inherent characteristic of the space, on use and activities in urban areas, the work aims to provide a more comprehensive framework for urban designers and planners. Looking at field surveys across the world, it focuses on understanding outdoor thermal comfort and how our adaptive capacity is enhanced through a range of adaptive mechanisms, from conscious actions to a range of parameters in the contextual framework of psychological adaptation, temporality and cultural norms. The work highlights the need for adaptive capacity and thermal resilience at the individual level, as well as spatial scale, supporting environmental diversity. In a warming climate and amidst a global health pandemic, outdoor comfort becomes an important commodity, where the design of open spaces has the potential to play a critical role not only in climate regulation and energy, but also in health, liveability and social cohesion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

Software

Project Websites

Publications

  • Aljawabra, F. (2014). Thermal Comfort in Outdoor Urban Spaces: the Hot Arid Climate, University of Bath, PhD thesis (unpublished).

    Google Scholar 

  • Aljawabra, F., & Nikolopoulou, M. (2009). Outdoor thermal comfort in the hot arid climate: The effect of socio-economic background and cultural differences. Proceedings: PLEA 2009-26th Conference on passive and low energy architecture, Canada.

    Google Scholar 

  • Aljawabra, F., & Nikolopoulou, M. (2010). The influence of hot arid climate on the use of outdoor urban spaces and thermal comfort: Do cultural and social backgrounds matter? Intelligent Buildings International, 2(3), 2010. https://doi.org/10.3763/inbi.2010.0046.

    Article  Google Scholar 

  • Aljawabra, F., & Nikolopoulou, M. (2018). Thermal comfort in urban spaces: A cross-cultural study in the hot arid climate. International Journal of Biometeorology, 62, 1901–1909.

    Article  Google Scholar 

  • Al-Khatri, H., & Gadi, M. B. (2019). Investigating the behaviour of ASHRAE, Bedford, and Nicol thermal scales when translated into the Arabic language. Building and Environment, 151, 348–355.

    Article  Google Scholar 

  • Arango, T. (2019). ‘Turn off the sunshine’: Why shade is a mark of privilege in Los Angeles, The New York Times, 1st December 2019. Retrieved from https://www.nytimes.com/2019/12/01/us/los-angeles-shade-climate-change.html.

  • ASHRAE. (2013). Standard 55:2013—Thermal environmental conditions for human occupancy, American Society of Heating, Refrigerating and Air-Conditioning Engineers.

    Google Scholar 

  • Atwa, S., Ibrahim, M. G., & Murata, R. (2020). Evaluation of plantation design methodology to improve the human thermal comfort in hot-arid climatic responsive open spaces. Sustainable Cities and Society, 59, 102198. https://doi.org/10.1016/j.scs.2020.102198.

    Article  Google Scholar 

  • Bloch, S. (2019). Shade. Places Journal. https://doi.org/10.22269/190423.

  • Brown, R. D. (2010). Design with microclimate: The secret to comfortable outdoor space. Washington: Island Press.

    Google Scholar 

  • Bruse, M., & Fleer, H. (1998). Simulating surface-plant-air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling and Software, 13(3–4), 373–384.

    Article  Google Scholar 

  • Brychkov, D., Garb, Y., & Pearlmutter, D. (2018). The influence of climatocultural background on outdoor thermal perception. International Journal of Biometeorology, 62(10), 1873–1886. https://doi.org/10.1007/s00484-018-1590-7.

    Article  Google Scholar 

  • Cabanac, M. (1996). The place of behavior in physiology. In M. J. Fregly & C. M. Blatteis (Eds.), Handbook of Physiology: A critical, comprehensive presentation of physiological knowledge and concepts, Sect 4 Environmental Physiology (pp. 1523–1536). New York: American Physiological Society, Oxford University Press.

    Google Scholar 

  • Carmona, M., Heath, T., Oc, T., & Tiesdell, S. (2003). Public places, urban spaces. Oxford: Architectural Press.

    Google Scholar 

  • Carr, S., Francis, M., Rivlin, L. G., & Stone, A. M. (1992). Public space. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chatzipoulka, C., & Nikolopoulou, M. (2018). Urban geometry, SVF and insolation of open spaces: London and Paris. Building Research and Information, 46, 881–889. https://doi.org/10.1080/09613218.2018.1463015.

    Article  Google Scholar 

  • Chatzipoulka, C., Compagnon, R., & Nikolopoulou, M. (2016). Urban geometry and solar availability on façades and ground of real urban forms: using London as a case study. Solar Energy, 138, 53–66. https://doi.org/10.1016/j.solener.2016.09.005.

    Article  Google Scholar 

  • Chatzipoulka, C., Steemers, K., & Nikolopoulou, M. (2020). Density and coverage values as indicators of thermal diversity in open spaces: Comparative analysis of London and Paris based on sun and wind shadow maps. Cities, 100, 102645. https://doi.org/10.1016/j.cities.2020.102645.

    Article  Google Scholar 

  • Chen, L., Wen, Y., Zhang, L., & Xiang, W.-N. (2015). Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Building and Environment, 94, 644–653.

    Article  Google Scholar 

  • CIBSE. (2015). Guide A: Environmental design. London: Chartered Institute of Building Services Engineers.

    Google Scholar 

  • Costamagna, F., Lind, R., & Stjernström, O. (2019). Livability of urban public spaces in Northern Swedish cities: The case of Umeå. Planning Practice and Research, 34(2), 131–148. https://doi.org/10.1080/02697459.2018.1548215.

    Article  Google Scholar 

  • CRES. (2004). Centre for renewable energy sources. RUROS project & database. Retrieved from http://alpha.cres.gr/ruros.

  • de Vet, E. (2017). Experiencing and responding to everyday weather in Darwin, Australia: The important role of tolerance, Weather. Climate and Society, 9, 141–154. https://doi.org/10.1175/WCAS-D-15-0069.1.

    Article  Google Scholar 

  • de Vries, S., van Dillen, S. M. E., Groenewegen, P. P., & Spreeuwenberg, P. (2013). Streetscape greenery and health: Stress, social cohesion and physical activity as mediators. Social Science & Medicine, 94, 26–33. https://doi.org/10.1016/j.socscimed.2013.06.030.

    Article  Google Scholar 

  • Eliasson, I., Knez, I., Westerberg, U., Thorsson, S., & Lindberg, F. (2007). Climate and behaviour in a Nordic city. Landscape and Urban Planning, 82, 72–84.

    Article  Google Scholar 

  • Erell, E., Pearlmutter, D., & Williamson, T. (2016). Urban microclimate: Designing the spaces between buildings. Routledge: Taylor & Francis Group.

    Google Scholar 

  • Evans, G. W. (1982). Environmental stress. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fabbri, K., Ugolini, A., Iacovella, A., & Bianchi, A. P. (2020). The effect of vegetation in outdoor thermal comfort in archaeological area in urban context. Building and Environment, 175, 106816. https://doi.org/10.1016/j.buildenv.2020.106816.

    Article  Google Scholar 

  • Faustini, F. B., de Faria, J. R. G., & Fontes, M. G. D. (2020). The influence of thermal comfort conditions on user’s exposure time in open spaces. International Journal of Biometeorology, 64, 243–252. https://doi.org/10.1007/s00484-019-01749-3.

    Article  Google Scholar 

  • Fontes, M., Aljawabra, F., & Nikolopoulou, M. (2008). Open urban spaces quality: a study in a historical square in Bath-UK, Proceedings 25th International Conference on Passive and Low Energy Architecture, Dublin.

    Google Scholar 

  • Foshag, K., Aeschbacha, N., Höfled, B., Winkler, R., Siegmund, A., & Aeschbach, W. (2020). Viability of public spaces in cities under increasing heat: A transdisciplinary approach. Sustainable Cities and Society, 59, 102215. https://doi.org/10.1016/j.scs.2020.102215.

    Article  Google Scholar 

  • Futcher, J., & Mills, G. (2015). Walking among giants, CIBSE Journal, February 2015. Retrieved from https://www.cibsejournal.com/uncategorized/walking-among-giants/.

  • Gehl, J. (1987). Life between buildings. New York: Van Nostrand-Reinhold.

    Google Scholar 

  • Giuffrida, L., Lokys, H., & Klemm, O. (2020). Assessing the effect of weather on human outdoor perception using Twitter. International Journal of Biometeorology, 64, 205–216. https://doi.org/10.1007/s00484-018-1574-7.

    Article  Google Scholar 

  • Hiroshima, S., Assis, E., & Nikolopoulou, M. (2016). Daytime thermal comfort in urban spaces: A field study in Brazil. Building and Environment, 103, 2016. https://doi.org/10.1016/j.buildenv.2016.08.006.

    Article  Google Scholar 

  • Hopkinson, R. G. (1963). Architectural physics: Lighting. London: Building Research Station HMSO.

    Google Scholar 

  • Höppe, P. (1999). The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71–75.

    Article  Google Scholar 

  • Humphreys, M.A. (1975). Field studies of thermal comfort compared and applied, building research establishment, current paper 76/75, Watford, UK.

    Google Scholar 

  • IPCC. (2018). Summary for policymakers. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization.

    Google Scholar 

  • ISO 7730. (2005). Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva: International Standards Organisation.

    Google Scholar 

  • Jendritzky, G., Havenith, G., Weihs, P., Batchvarova, E., & de Dear, R. (2008). The universal thermal climate index UTCI-goal and state of COST action 730 and ISB commission 6. In: Proceedings 18th International Congress of Biometeorology, Tokyo, Japan.

    Google Scholar 

  • Jesdale, B. M., Morello-Frosch, R., & Cushing, L. (2013). The racial/ethnic distribution of heat risk–related land cover in relation to residential segregation. Environmental Health Perspectives, 121, 811–817. https://doi.org/10.1289/ehp.1205919.

    Article  Google Scholar 

  • Johansson, E., Thorsson, S., Emmanuel, R., & Krüger, E. (2014). Instruments and methods in outdoor thermal comfort studies—The need for standardization. Urban Climate, 10, 346–366.

    Article  Google Scholar 

  • Kántor, N., Égerházi, L., & Unger, J. (2012). Subjective estimation of thermal environment in recreational urban spaces—Part 1: investigations in Szeged, Hungary. International Journal of Biometeorology, 56, 1075–1088.

    Article  Google Scholar 

  • Klok, L., Rood, N., Kluck, J., & Kleerekoper, L. (2020). Assessment of thermally comfortable urban spaces in Amsterdam during hot summer days. International Journal of Biometeorology, 64(2), 303. https://doi.org/10.1007/s00484-019-01818-7.

    Article  Google Scholar 

  • Knez, I., & Thorsson, S. (2006). Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. International Journal of Biometeorology, 50, 258–268. https://doi.org/10.1007/s00484-006-0024-0.

    Article  Google Scholar 

  • Knez, I., Thorsson, S., Eliasson, I., & Lindberg, F. (2009). Psychological mechanisms in outdoor place and weather assessment: Towards a conceptual model. International Journal of Biometeorology, 53, 101–111. https://doi.org/10.1007/s00484-008-0194-z.

    Article  Google Scholar 

  • Kolokotroni, M., Gowreesunker, B. L., & Giridharan, R. (2013). Cool roof technology in London: An experimental and modelling study. Energy and Buildings, 67, 658–667.

    Article  Google Scholar 

  • Lai, D., Lian, Z., Liu, W., Guo, C., Liu, W., Liu, K., & Chen, Q. (2020). A comprehensive review of thermal comfort studies in urban open spaces. Science of the Total Environment, 742, 140092. https://doi.org/10.1016/j.scitotenv.2020.140092.

    Article  Google Scholar 

  • Larsson, A., & Chapman, D. (2020). Perceived impact of meteorological conditions on the use of public space in winter settlements. International Journal of Biometeorology, 64, 631–642. https://doi.org/10.1007/s00484-019-01852-5.

    Article  Google Scholar 

  • Lemonsu, A., Amossé, A., Chouillou, D., Gaudio, N., Haouès-Jouve, S., Hidalgo, J., Le Bras, J., Marchandise, S., & Tudoux, B. (2020). Comparison of microclimate measurements and perceptions as part of a global evaluation of environmental quality at neighbourhood scale. International Journal of Biometeorology, 64, 265–276. https://doi.org/10.1007/s00484-019-01686-1.

    Article  Google Scholar 

  • Leng, H., Liang, S., & Yuan, Q. (2020). Outdoor thermal comfort and adaptive behaviors in the residential public open spaces of winter cities during the marginal season. International Journal of Biometeorology, 64, 217–229. https://doi.org/10.1007/s00484-019-01709-x.

    Article  Google Scholar 

  • Lenzholzer, S. (2015). Weather in the city-how design shapes the urban climate. Rotterdam: Nai 010 Uitgevers/Publishers.

    Google Scholar 

  • Lenzholzer, S., & Nikolopoulou, M. (2020). Foreword to the Special Issue on Subjective approaches to thermal perception. International Journal of Biometeorology, 64, 167–171. https://doi.org/10.1007/s00484-019-01857-0.

    Article  Google Scholar 

  • Lin, T.-P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44, 2017–2026. https://doi.org/10.1016/j.buildenv.2009.02.004.

    Article  Google Scholar 

  • Lin, T.-P., Tsai, K.-T., Liao, C.-C., & Huang, Y.-C. (2013). Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Building and Environment, 59, 599–611.

    Article  Google Scholar 

  • Llewelyn-Davies. (2007). Urban design compendium English partnerships. London: Housing Corporation.

    Google Scholar 

  • Mahgoub, M. H., & Hamza, N. (2019). Behavioural perspectives of outdoor thermal comfort in urban areas: A critical review. Atmosphere, 11(1), 51. https://doi.org/10.3390/atmos11010051.

    Article  Google Scholar 

  • Manavvi, S., & Rajasekar, E. (2020). Semantics of outdoor thermal comfort in religious squares of composite climate: New Delhi, India. International Journal of Biometeorology, 64, 253–264. https://doi.org/10.1007/s00484-019-01708-y.

    Article  Google Scholar 

  • Matzarakis, A. (2000). Estimation and calculation of the mean radiant temperature within urban structures. In Manual to RayMan. Germany: University of Freiburg.

    Google Scholar 

  • Matzarakis, A., Mayer, H., & Izimon, M. G. (1999). Applications of a universal thermal index: physiological equivalent temperature. International Journal of Biometeorology, 43, 76–84.

    Article  Google Scholar 

  • McKinnon, G., Pineo, H., Chang, M., Taylor-Green, L., Johns, A., & Toms, R. (2020). Strengthening the links between planning and health in England. BMJ, 369, m795. https://doi.org/10.1136/bmj.m795.

    Article  Google Scholar 

  • Nicol, F., Humphreys, M. A., & Roaf, S. (2012). Adaptive thermal comfort: Principles and practice. London: Routledge.

    Book  Google Scholar 

  • Nikolopoulou, M. (2004). Designing open spaces in the urban environment: A bioclimatic approach, centre for renewable energy sources, EESD, FP5.

    Google Scholar 

  • Nikolopoulou, M. (2012). Urban open spaces and adaptation to climate change. In M. Richter & U. Weiland (Eds.), Applied urban ecology (pp. 106–122). Chichester: Wiley-Blackwell.

    Google Scholar 

  • Nikolopoulou, M., & Lykoudis, S. (2006). Thermal comfort in outdoor urban spaces: Analysis across different European countries. Building and Environment, 41, 1455–1470.

    Article  Google Scholar 

  • Nikolopoulou, M., & Lykoudis, S. (2007). Use of outdoor spaces and microclimate in a Mediterranean urban area. Building and Environment, 42, 3691–3707.

    Article  Google Scholar 

  • Nikolopoulou, M., & Steemers, K. (2003). Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy and Buildings, 35, 95–101.

    Article  Google Scholar 

  • Nikolopoulou, M., Baker, N., & Steemers, K. (1999). Thermal comfort in outdoor urban spaces: Different forms of adaptation, Proc. Rebuild 1999. Barcelona: The Cities of Tomorrow.

    Google Scholar 

  • Nikolopoulou, M., Baker, N., & Steemers, K. (2001). Thermal comfort in outdoor urban spaces understanding the human parameter. Solar Energy, 70, 227–235.

    Article  Google Scholar 

  • Nikolopoulou, M., Kotopouleas, A., Lykoudis, S. (2018). From indoors to outdoors and in-transition; thermal comfort across different operation contexts. In Proceedings of Windsor Conference. Rethinking Comfort (pp. 747–759).

    Google Scholar 

  • O’DonnellBrown (2019) The community classroom, ArchDaily. Retrieved from https://www.archdaily.com/936.845/the-community-classroom-odonnellbrown.

  • Oke, T. R. (1987). Boundary layer climates (2nd ed.). London: Methuen.

    Google Scholar 

  • Olgyay, V. (1963). Design with climate: Bioclimatic approach to architectural regionalism. Princeton: Princeton University Press.

    Google Scholar 

  • Orange, R. (2020). Split classes, outdoor lessons: what Denmark can teach England about reopening schools after Covid-19, The Observer, Sunday 17th May. Retrieved from https://www.theguardian.com/education/2020/may/17/denmark-can-teach-england-safe-reopening-of-schools-covid-19.

    Google Scholar 

  • Paciuc, M. (1990). The role of personal control of the environment in thermal comfort and satisfaction at the workplace. In R. I. Selby, K. H. Anthony, J. Choi, & B. Orland (Eds.), Coming of age. Syracuse: Environment Design Research Association.

    Google Scholar 

  • Pantavou, K., Lykoudis, S., Delibasis, K., Tseliou, A., Koletsi, I., Nikolopoulou, M. and Tsiros, I.X. (2019). The integration of three field survey datasets in Athens, Greece: Transformation of five-point to seven-point thermal sensation scale. In: 16th International Conference on Environmental Science and Technology, Rhodes, Greece.

    Google Scholar 

  • Pantavou, K., Koletsis, I., Lykoudis, S., Melas, E., Nikolopoulou, M., & Tsiros, I. X. (2020). Native influences on the construction of thermal sensation scales. International Journal of Biometeorology, 64, 1497–1508. https://doi.org/10.1007/s00484-020-01927-8.

    Article  Google Scholar 

  • Pearlmutter, D., Jiao, D., & Garb, Y. (2014). The relationship between bioclimatic thermal stress and subjective thermal sensation in pedestrian spaces. International Journal of Biometeorology, 58, 2111–2127. https://doi.org/10.1007/s00484-014-0812-x[486].

    Article  Google Scholar 

  • Penwarden, A. D. (1973). Acceptable wind speeds in towns. Building Science, 8(3), 259–267.

    Article  Google Scholar 

  • Pitts, A. (2006). The languages and semantics of thermal comfort. In: Proceedings: Network for Comfort and Energy Use in Buildings, Getting them Right. Cumberland Lodge, Windsor, UK.

    Google Scholar 

  • Platt, L. (2006). Poverty. In G. Payne (Ed.), Social Divisions (2nd ed.). Hampshire: Palgrave Macmillan.

    Google Scholar 

  • Roesler, S. (2019). On microclimatic islands; the garden as a place of intensified thermal experience, Les Cahiers de la Recherche Architecturale Urbaine et Paysagère.

    Google Scholar 

  • Russell, D., Gawthrop, E., Penney, V., Raj, A., & Hickey, B. (2020). Deadly heat is killing Americans: A decade of inaction on climate puts lives at risk, The Guardian, 16th June 2020. Retrieved from https://www.theguardian.com/us-news/2020/jun/16/climate-deaths-heat-cdc.

  • Santamouris, M., & Kolokotsa, D. (2016). Urban climate mitigation techniques. Abingdon: Routledge.

    Book  Google Scholar 

  • Sharifi, E., & Boland, J. (2020). Passive activity observation (PAO) method to estimate outdoor thermal adaptation in public space: case studies in Australian cities. International Journal of Biometeorology, 64, 231–242. https://doi.org/10.1007/s00484-018-1570-y.

    Article  Google Scholar 

  • Siple, P., & Passel, C. (1945). Measurements of dry atmospheric cooling in subfreezing temperatures. Proceedings of the American Philosophical Society, 89(1), 177–199.

    Google Scholar 

  • Thom, E. C. (1959). The discomfort index. Weatherwise, 12, 57–60.

    Article  Google Scholar 

  • Thorsson, S., Lindqvist, M., & Lindqvist, S. (2004). Thermal bioclimatic conditions and patterns of behaviour in an urban park in Goteborg, Sweden. International Journal of Biometeorology, 48, 149–156.

    Article  Google Scholar 

  • Tseliou, A., Tsiors, I. X., Lykoudis, S., & Nikolopoulou, M. (2010). An evaluation of three biometeorological indices for human thermal comfort in urban outdoor areas under real climatic conditions. Building and Environment, 45, 1346–1352. https://doi.org/10.1016/j.buildenv.2009.11.009.

    Article  Google Scholar 

  • Tsichritzis, L., & Nikolopoulou, M. (2019). The effect of building height and façade area ratio on pedestrian wind comfort of London. Journal of Wind Engineering and Industrial Aerodynamics, 191, 63–75. https://doi.org/10.1016/j.jweia.2019.05.021.

    Article  Google Scholar 

  • Vasilikou, C. and Nikolopoulou, M. (2013). Thermal walks: Identifying pedestrian thermal comfort variations in the urban continuum of historic city centres. In Proceedings of PLEA 2013: International conference on sustainable architecture for a renewable future, Munich.

    Google Scholar 

  • Vasilikou, C., & Nikolopoulou, M. (2015). Thermal perception of pedestrians moving in interconnected urban spaces: adaptive thermal comfort in irregular spatial sequences in Rome and London. In Proceedings of PLEA 2015. Bologna: Architecture in (R) Evolution.

    Google Scholar 

  • Vasilikou, C., & Nikolopoulou, M. (2020). Outdoor thermal comfort for pedestrians in movement: thermal walks in complex urban morphology. International Journal of Biometeorology, 64, 277–291. https://doi.org/10.1007/s00484-019-01782-2.

    Article  Google Scholar 

  • Westerberg, U. (1994). Climatic planning—Physics or symbolism. Architecture and Behaviour, 19, 49–72.

    Google Scholar 

  • Yahia, M. W., & Johansson, E. (2013). Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. International Journal of Biometeorology, 57, 615–630. https://doi.org/10.1007/s00484-012-0589-8.

    Article  Google Scholar 

  • Yang, B., Olofsson, T., Nair, G., & Kabanshi, A. (2017). Outdoor thermal comfort under subarctic climate of North Sweden—A pilot study in Umeå. Sustainable Cities and Society, 28, 387–397. https://doi.org/10.1016/j.scs.2016.10.011.

    Article  Google Scholar 

  • Zacharias, J., Stathopoulos, T., & Hanqing, W. (2001). Microclimate and downtown open space activity. Environment and Behaviour, 33(2), 296–315.

    Article  Google Scholar 

  • Zucker, P. (1959). Town and square. New York: Columbia University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marialena Nikolopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikolopoulou, M. (2021). Thermal Comfort in Urban Spaces. In: Palme, M., Salvati, A. (eds) Urban Microclimate Modelling for Comfort and Energy Studies. Springer, Cham. https://doi.org/10.1007/978-3-030-65421-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65421-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65420-7

  • Online ISBN: 978-3-030-65421-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics