Skip to main content

Immune Responses to EBV in the Immunocompromised Host

  • Chapter
  • First Online:
Post-Transplant Lymphoproliferative Disorders

Abstract

EBV is a γ herpesvirus that infects more than 95% of the world’s adult population. Primary EBV infection occurs during childhood when it usually is asymptomatic or during adolescence when it may manifest as infectious mononucleosis (IM). Regardless of the clinical manifestation of primary infection, EBV persists in the B cell compartment of the infected host in a latent state of infection that may be occasionally interrupted by episodic lytic viral reactivations. Although EBV elicits and maintains potent immune responses that successfully keep both its latency and reactivation phases under tight control in healthy humans, the virus may associate with several malignancies in individuals with immunodeficiencies or individuals whose cellular immunity is impaired, because of the growth-transforming function of some of the EBV latent genes, which are true oncogenes. This chapter will discuss the features of innate and adaptive immunity to EBV in healthy and in immunosuppressed organ transplant patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chijioke O, Azzi T, Nadal D, Munz C. Innate immune responses against Epstein Barr virus infection. J Leukoc Biol. 2013;94(6):1185–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lunemann A, Rowe M, Nadal D. Innate immune recognition of EBV. Curr Top Microbiol Immunol. 2015;391:265–87.

    CAS  PubMed  Google Scholar 

  3. Netea MG. Training innate immunity: the changing concept of immunological memory in innate host defence. Eur J Clin Investig. 2013;43(8):881–4.

    Article  CAS  Google Scholar 

  4. Sun JC, Lanier LL. Is there natural killer cell memory and can it be harnessed by vaccination? NK cell memory and immunization strategies against infectious diseases and cancer. Cold Spring Harb Perspect Biol. 2018;10(10):a029538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fiola S, Gosselin D, Takada K, Gosselin J. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. J Immunol. 2010;185(6):3620–31.

    Article  CAS  PubMed  Google Scholar 

  7. Zauner L, Melroe GT, Sigrist JA, Rechsteiner MP, Dorner M, Arnold M, et al. TLR9 triggering in Burkitt’s lymphoma cell lines suppresses the EBV BZLF1 transcription via histone modification. Oncogene. 2010;29(32):4588–98.

    Article  CAS  PubMed  Google Scholar 

  8. van Gent M, Griffin BD, Berkhoff EG, van Leeuwen D, Boer IG, Buisson M, et al. EBV lytic-phase protein BGLF5 contributes to TLR9 downregulation during productive infection. J Immunol. 2011;186(3):1694–702.

    Article  PubMed  CAS  Google Scholar 

  9. Torii Y, Kawada JI, Murata T, Yoshiyama H, Kimura H, Ito Y. Epstein-Barr virus infection-induced inflammasome activation in human monocytes. PLoS One. 2017;12(4):e0175053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Meckes DG Jr. Exosomal communication goes viral. J Virol. 2015;89(10):5200–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med. 2009;206(10):2091–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iwakiri D. Epstein-Barr virus-encoded RNAs: key molecules in viral pathogenesis. Cancers (Basel). 2014;6(3):1615–30.

    Article  CAS  Google Scholar 

  13. Gaudreault E, Fiola S, Olivier M, Gosselin J. Epstein-Barr virus induces MCP-1 secretion by human monocytes via TLR2. J Virol. 2007;81(15):8016–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azzi T, Lunemann A, Murer A, Ueda S, Beziat V, Malmberg KJ, et al. Role for early-differentiated natural killer cells in infectious mononucleosis. Blood. 2014;124(16):2533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chijioke O, Muller A, Feederle R, Barros MH, Krieg C, Emmel V, et al. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection. Cell Rep. 2013;5(6):1489–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Freud AG, Yu J, Caligiuri MA. Human natural killer cell development in secondary lymphoid tissues. Semin Immunol. 2014;26(2):132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dunmire SK, Odumade OA, Porter JL, Reyes-Genere J, Schmeling DO, Bilgic H, et al. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes. PLoS One. 2014;9(1):e85422.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Balfour HH Jr, Verghese P. Primary Epstein-Barr virus infection: impact of age at acquisition, coinfection, and viral load. J Infect Dis. 2013;207(12):1787–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hadinoto V, Shapiro M, Sun CC, Thorley-Lawson DA. The dynamics of EBV shedding implicate a central role for epithelial cells in amplifying viral output. PLoS Pathog. 2009;5(7):e1000496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Thorley-Lawson DA. EBV the prototypical human tumor virus--just how bad is it? J Allergy Clin Immunol. 2005;116(2):251–61; quiz 62.

    Article  CAS  PubMed  Google Scholar 

  21. Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, et al. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med. 1998;187(9):1395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hislop AD, Kuo M, Drake-Lee AB, Akbar AN, Bergler W, Hammerschmitt N, et al. Tonsillar homing of Epstein-Barr virus-specific CD8+ T cells and the virus-host balance. J Clin Invest. 2005;115(9):2546–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol. 1997;15:405–31.

    Article  CAS  PubMed  Google Scholar 

  24. Catalina MD, Sullivan JL, Bak KR, Luzuriaga K. Differential evolution and stability of epitope-specific CD8(+) T cell responses in EBV infection. J Immunol. 2001;167(8):4450–7.

    Article  CAS  PubMed  Google Scholar 

  25. Tellam J, Connolly G, Green KJ, Miles JJ, Moss DJ, Burrows SR, et al. Endogenous presentation of CD8+ T cell epitopes from Epstein-Barr virus-encoded nuclear antigen 1. J Exp Med. 2004;199(10):1421–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Catalina MD, Sullivan JL, Brody RM, Luzuriaga K. Phenotypic and functional heterogeneity of EBV epitope-specific CD8+ T cells. J Immunol. 2002;168(8):4184–91.

    Article  CAS  PubMed  Google Scholar 

  27. Hislop AD, Annels NE, Gudgeon NH, Leese AM, Rickinson AB. Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection. J Exp Med. 2002;195(7):893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dunne PJ, Faint JM, Gudgeon NH, Fletcher JM, Plunkett FJ, Soares MV, et al. Epstein-Barr virus-specific CD8(+) T cells that re-express CD45RA are apoptosis-resistant memory cells that retain replicative potential. Blood. 2002;100(3):933–40.

    Article  CAS  PubMed  Google Scholar 

  29. Balfour HH Jr, Odumade OA, Schmeling DO, Mullan BD, Ed JA, Knight JA, et al. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207(1):80–8.

    Article  CAS  PubMed  Google Scholar 

  30. Paludan C, Bickham K, Nikiforow S, Tsang ML, Goodman K, Hanekom WA, et al. Epstein-Barr nuclear antigen 1-specific CD4(+) Th1 cells kill Burkitt’s lymphoma cells. J Immunol. 2002;169(3):1593–603.

    Article  CAS  PubMed  Google Scholar 

  31. Jayasooriya S, de Silva TI, Njie-jobe J, Sanyang C, Leese AM, Bell AI, et al. Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLoS Pathog. 2015;11(3):e1004746.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Abbott RJ, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB. CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response. J Immunol. 2013;191(11):5398–409.

    Article  CAS  PubMed  Google Scholar 

  33. Crough T, Burrows JM, Fazou C, Walker S, Davenport MP, Khanna R. Contemporaneous fluctuations in T cell responses to persistent herpes virus infections. Eur J Immunol. 2005;35(1):139–49.

    Article  CAS  PubMed  Google Scholar 

  34. Long HM, Chagoury OL, Leese AM, Ryan GB, James E, Morton LT, et al. MHC II tetramers visualize human CD4+ T cell responses to Epstein-Barr virus infection and demonstrate atypical kinetics of the nuclear antigen EBNA1 response. J Exp Med. 2013;210(5):933–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khanna R, Burrows SR, Steigerwald-Mullen PM, Thomson SA, Kurilla MG, Moss DJ. Isolation of cytotoxic T lymphocytes from healthy seropositive individuals specific for peptide epitopes from Epstein-Barr virus nuclear antigen 1: implications for viral persistence and tumor surveillance. Virology. 1995;214(2):633–7.

    Article  CAS  PubMed  Google Scholar 

  36. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005;307(5709):593–6.

    Article  CAS  PubMed  Google Scholar 

  37. Ressing ME, van Gent M, Gram AM, Hooykaas MJG, Piersma SJ, Wiertz EJHJ. Immune evasion by Epstein-Barr virus. In: Münz C, editor. Epstein Barr virus volume 2: one herpes virus: many diseases. Cham: Springer International Publishing; 2015. p. 355–81.

    Chapter  Google Scholar 

  38. Salek-Ardakani S, Arrand JR, Mackett M. Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology. 2002;304(2):342–51.

    Article  CAS  PubMed  Google Scholar 

  39. Horst D, Favaloro V, Vilardi F, van Leeuwen HC, Garstka MA, Hislop AD, et al. EBV protein BNLF2a exploits host tail-anchored protein integration machinery to inhibit TAP. J Immunol. 2011;186(6):3594–605.

    Article  CAS  PubMed  Google Scholar 

  40. Albanese M, Tagawa T, Bouvet M, Maliqi L, Lutter D, Hoser J, et al. Epstein-Barr virus microRNAs reduce immune surveillance by virus-specific CD8+ T cells. Proc Natl Acad Sci U S A. 2016;113(42):E6467–E75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Young LS, Dawson CW, Eliopoulos AG. Epstein-Barr virus and apoptosis: viral mimicry of cellular pathways. Biochem Soc Trans. 1999;27(6):807–12.

    Article  CAS  PubMed  Google Scholar 

  42. Portis T, Longnecker R. Epstein-Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/Akt pathway. Oncogene. 2004;23(53):8619–28.

    Article  CAS  PubMed  Google Scholar 

  43. Dharnidharka VR, Webster AC, Martinez OM, Preiksaitis JK, Leblond V, Choquet S. Post-transplant lymphoproliferative disorders. Nat Rev Dis Primers. 2016;2:15088.

    Article  PubMed  Google Scholar 

  44. Thorley-Lawson DA, Hawkins JB, Tracy SI, Shapiro M. The pathogenesis of Epstein-Barr virus persistent infection. Curr Opin Virol. 2013;3(3):227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez OM. Biomarkers for PTLD diagnosis and therapies. Pediatr Nephrol. 2020;35(7):1173–81.

    Article  PubMed  Google Scholar 

  46. L’Huillier AG, Dipchand AI, Ng VL, Hebert D, Avitzur Y, Solomon M, et al. Posttransplant lymphoproliferative disorder in pediatric patients: characteristics of disease in EBV-seropositive recipients. Transplantation. 2019;103:e369.

    Article  PubMed  Google Scholar 

  47. Francis A, Johnson DW, Teixeira-Pinto A, Craig JC, Wong G. Incidence and predictors of post-transplant lymphoproliferative disease after kidney transplantation during adulthood and childhood: a registry study. Nephrol Dial Transplant. 2018;33(5):881–9.

    Article  PubMed  Google Scholar 

  48. Bingler MA, Feingold B, Miller SA, Quivers E, Michaels MG, Green M, et al. Chronic high Epstein-Barr viral load state and risk for late-onset posttransplant lymphoproliferative disease/lymphoma in children. Am J Transplant. 2008;8(2):442–5.

    Article  CAS  PubMed  Google Scholar 

  49. Hislop AD, Taylor GS. T-cell responses to EBV. Curr Top Microbiol Immunol. 2015;391:325–53.

    CAS  PubMed  Google Scholar 

  50. Vallin P, Desy O, Beland S, Bouchard-Boivin F, Houde I, De Serres SA. Impaired secretion of TNF-alpha by monocytes stimulated with EBV peptides associates with infectious complications after kidney transplantation. Transplantation. 2018;102(6):1005–13.

    Article  CAS  PubMed  Google Scholar 

  51. Hinrichs C, Wendland S, Zimmermann H, Eurich D, Neuhaus R, Schlattmann P, et al. IL-6 and IL-10 in post-transplant lymphoproliferative disorders development and maintenance: a longitudinal study of cytokine plasma levels and T-cell subsets in 38 patients undergoing treatment. Transpl Int. 2011;24(9):892–903.

    Article  CAS  PubMed  Google Scholar 

  52. Tosato G, Jones K, Breinig MK, McWilliams HP, McKnight JL. Interleukin-6 production in posttransplant lymphoproliferative disease. J Clin Invest. 1993;91(6):2806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lim WH, Kireta S, Russ GR, Coates PT. Human plasmacytoid dendritic cells regulate immune responses to Epstein-Barr virus (EBV) infection and delay EBV-related mortality in humanized NOD-SCID mice. Blood. 2007;109(3):1043–50.

    Article  CAS  PubMed  Google Scholar 

  54. Pham B, Piard-Ruster K, Silva R, Gallo A, Esquivel CO, Martinez OM, et al. Changes in natural killer cell subsets in pediatric liver transplant recipients. Pediatr Transplant. 2012;16(2):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wiesmayr S, Webber SA, Macedo C, Popescu I, Smith L, Luce J, et al. Decreased NKp46 and NKG2D and elevated PD-1 are associated with altered NK-cell function in pediatric transplant patients with PTLD. Eur J Immunol. 2012;42(2):541–50.

    Article  CAS  PubMed  Google Scholar 

  56. LeVasseur R, Ganjoo J, Green M, Janosky J, Reyes J, Mazariegos G, et al. Lymphocyte subsets may discern treatment effects in children and young adults with post-transplant lymphoproliferative disorder. Pediatr Transplant. 2003;7(5):370–5.

    Article  PubMed  Google Scholar 

  57. Macedo C, Donnenberg A, Popescu I, Reyes J, Abu-Elmagd K, Shapiro R, et al. EBV-specific memory CD8+ T cell phenotype and function in stable solid organ transplant patients. Transpl Immunol. 2005;14(2):109–16.

    Article  CAS  PubMed  Google Scholar 

  58. Macedo C, Popescu I, Abu-Elmagd K, Reyes J, Shapiro R, Zeevi A, et al. Augmentation of type-1 polarizing ability of monocyte-derived dendritic cells from chronically immunosuppressed organ-transplant recipients. Transplantation. 2005;79(4):451–9.

    Article  CAS  PubMed  Google Scholar 

  59. Popescu I, Macedo C, Abu-Elmagd K, Shapiro R, Hua Y, Thomson AW, et al. EBV-specific CD8+ T cell reactivation in transplant patients results in expansion of CD8+ type-1 regulatory T cells. Am J Transplant. 2007;7(5):1215–23.

    Article  CAS  PubMed  Google Scholar 

  60. Pietersma FL, van Oosterom A, Ran L, Schuurman R, Meijer E, de Jonge N, et al. Adequate control of primary EBV infection and subsequent reactivations after cardiac transplantation in an EBV seronegative patient. Transpl Immunol. 2012;27(1):48–51.

    Article  CAS  PubMed  Google Scholar 

  61. Falco DA, Nepomuceno RR, Krams SM, Lee PP, Davis MM, Salvatierra O, et al. Identification of Epstein-Barr virus-specific CD8+ T lymphocytes in the circulation of pediatric transplant recipients. Transplantation. 2002;74(4):501–10.

    Article  CAS  PubMed  Google Scholar 

  62. Macedo C, Webber SA, Donnenberg AD, Popescu I, Hua Y, Green M, et al. EBV-specific CD8+ T cells from asymptomatic pediatric thoracic transplant patients carrying chronic high EBV loads display contrasting features: activated phenotype and exhausted function. J Immunol. 2011;186(10):5854–62.

    Article  CAS  PubMed  Google Scholar 

  63. Macedo CHK, Rowe D, Luce J, Webber S, Feingold B, Metes D. Identification of CXCR5+EBV-specific CD8+ T cells in peripheral blood of pediatric heart transplant recipients correlates with IL-21 production and EBV reactivation. Am J Transplant. 2015;15(3):D225.

    Google Scholar 

  64. Yu D, Ye L. A portrait of CXCR5(+) follicular cytotoxic CD8(+) T cells. Trends Immunol. 2018;39(12):965–79.

    Article  CAS  PubMed  Google Scholar 

  65. Macedo C, Zeevi A, Bentlejewski C, Popescu I, Green M, Rowe D, et al. The impact of EBV load on T-cell immunity in pediatric thoracic transplant recipients. Transplantation. 2009;88(1):123–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Smets F, Latinne D, Bazin H, Reding R, Otte JB, Buts JP, et al. Ratio between Epstein-Barr viral load and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease. Transplantation. 2002;73(10):1603–10.

    Article  PubMed  Google Scholar 

  67. Wilsdorf N, Eiz-Vesper B, Henke-Gendo C, Diestelhorst J, Oschlies I, Hussein K, et al. EBV-specific T-cell immunity in pediatric solid organ graft recipients with posttransplantation lymphoproliferative disease. Transplantation. 2013;95(1):247–55.

    Article  CAS  PubMed  Google Scholar 

  68. Ning RJ, Xu XQ, Chan KH, Chiang AK. Long-term carriers generate Epstein-Barr virus (EBV)-specific CD4(+) and CD8(+) polyfunctional T-cell responses which show immunodominance hierarchies of EBV proteins. Immunology. 2011;134(2):161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, et al. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012;338(6111):1220–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gong B, Kiyotani K, Sakata S, Nagano S, Kumehara S, Baba S, et al. Secreted PD-L1 variants mediate resistance to PD-L1 blockade therapy in non-small cell lung cancer. J Exp Med. 2019;216(4):982–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ohga S, Nomura A, Takada H, Tanaka T, Furuno K, Takahata Y, et al. Dominant expression of interleukin-10 and transforming growth factor-beta genes in activated T-cells of chronic active Epstein-Barr virus infection. J Med Virol. 2004;74(3):449–58.

    Article  CAS  PubMed  Google Scholar 

  72. Prockop SE, Vatsayan A. Epstein-Barr virus lymphoproliferative disease after solid organ transplantation. Cytotherapy. 2017;19(11):1270–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana M. Metes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Metes, D.M. (2021). Immune Responses to EBV in the Immunocompromised Host. In: Dharnidharka, V.R., Green, M., Webber, S.A., Trappe, R.U. (eds) Post-Transplant Lymphoproliferative Disorders. Springer, Cham. https://doi.org/10.1007/978-3-030-65403-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65403-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65402-3

  • Online ISBN: 978-3-030-65403-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics