Skip to main content

Computational Methods for Predicting Autism Spectrum Disorder from Gene Expression Data

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12447))

Included in the following conference series:

  • 1392 Accesses

Abstract

Autism Spectrum Disorder (ASD) is defined as polygenetic developmental and neurobiological disorders that cover a variety of development delays in social interactions. In recent years, computational methods using gene expression data have been proved to be effective in predicting ASD at the early stage. Feature selection methods directly affect the prediction performance of the ASD prognosis methods. With the advances of computational methods and exploding of high-dimensional ASD gene expression data, there is a need to examine the performance of different computational techniques in predicting ASD. In this paper, we review and conduct a comparison study of 22 different feature selection methods for predicting ASD from gene expression data. The methods are categorised into traditional methods (14 methods) and network-based methods (8 methods). The experimental results have shown that the network-based methods generally outperform the traditional feature selection methods in all three accuracy measures, including AUC (area under the curve), F1-score, and Matthews Correlation Coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association et al. Diagnostic and statistical manual of mental disorders (DSM-5\({\textregistered }\)). American Psychiatric Pub (2013)

    Google Scholar 

  2. McConachie, H., Le Couteur, A., Honey, E.: Can a diagnosis of asperger syndrome be made in very young children with suspected autism spectrum disorder? J. Autism Dev. Disord. 35, 167–176 (2005)

    Article  Google Scholar 

  3. Sahin, M., Sur, M.: Genes, circuits, and precision therapies for autism and related neurodevelopmental disorders. Science 350(6263), aab3897 (2015)

    Article  Google Scholar 

  4. Lai, M.-C., Lombardo, M.V., Baron-Cohen, S.: Autism. The Lancet 383(9920), 896–910 (2014)

    Article  Google Scholar 

  5. Gabis, L., Raz, R., Kesner-Baruch, Y.: Paternal age in autism spectrum disorders and ADHD. Pediatr. Neurol. 43(4), 300–302 (2010)

    Article  Google Scholar 

  6. Muhle, R.A., Reed, H.E., Stratigos, K.A., Veenstra-VanderWeele, J.: The emerging clinical neuroscience of autism spectrum disorder. JAMA Psychiatry 75(5), 514 (2018)

    Article  Google Scholar 

  7. Baron-Cohen, S.: Two new theories of autism: hyper-systemising and assortative mating. Arch. Dis. Child. 91, 2–5 (2006)

    Article  Google Scholar 

  8. Ecker, C., Bookheimer, S.Y., Murphy, D.G.M.: Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 14(11), 1121–1134 (2015)

    Article  Google Scholar 

  9. Hall, L., Kelley, E.: The contribution of epigenetics to understanding genetic factors in autism. Autism 18(8), 872–881 (2013)

    Article  Google Scholar 

  10. Wong, C.C.Y., et al.: Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits. Mol. Psychiatry 19(4), 495–503 (2013)

    Article  Google Scholar 

  11. Nagarajan, R.P., Hogart, A.R., Gwye, Y., Martin, M.R., LaSalle, J.M.: Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. Epigenetics 1, e1–e11 (2006)

    Article  Google Scholar 

  12. Garbett, K., et al.: Immune transcriptome alterations in the temporal cortex of subjects with autism. Neurobiol. Dis. 30(3), 303–311 (2008)

    Article  Google Scholar 

  13. Voineagu, I., Eapen, V.: Converging pathways in autism spectrum disorders: interplay between synaptic dysfunction and immune responses. Front. Hum. Neurosci. 7, 738 (2013)

    Article  Google Scholar 

  14. Walker, S.J., Fortunato, J., Gonzalez, L.G., Krigsman, A.: Identification of unique gene expression profile in children with regressive autism spectrum disorder (ASD) and ileocolitis. PLoS One 8(3), e58058 (2013)

    Article  Google Scholar 

  15. Emanuele, E., et al.: Increased dopamine DRD4 receptor mRNA expression in lymphocytes of musicians and autistic individuals: bridging the music-autism connection. Neuro Endocrinol. Lett. 31, 122–125 (2010)

    Google Scholar 

  16. Chien, W.-H., et al.: Increased gene expression of FOXP1 in patients with autism spectrum disorders. Mol. Autism 4(1), 23 (2013)

    Article  Google Scholar 

  17. Zhang, Z., Zhu, Q., Xie, G.-S., Chen, Y., Li, Z., Wang, S.: Discriminative margin-sensitive autoencoder for collective multi-view disease analysis. Neural Netw. 123, 94–107 (2020)

    Article  Google Scholar 

  18. Oh, D.H., Kim, I.B., Kim, S.H., Ahn, D.H.: Predicting autism spectrum disorder using blood-based gene expression signatures and machine learning. Clin. Psychopharmacol. Neurosci. 15(1), 47–52 (2017)

    Article  Google Scholar 

  19. Kong, S.W., et al.: Characteristics and predictive value of blood transcriptome signature in males with autism spectrum disorders. PLoS One 7(12), e49475 (2012)

    Article  Google Scholar 

  20. Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric attributes. In: 1995 Proceedings of the Seventh International Conference on Tools with Artificial Intelligence, pp. 388–391. IEEE (1995)

    Google Scholar 

  21. Fleuret, F.: Fast binary feature selection with conditional mutual information. J. Mach. Learn. Res. 5(2004), 1531–1555 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2012)

    MATH  Google Scholar 

  23. Wright, S.: The interpretation of population structure by f-statistics with special regard to systems of mating. Evolution 19(3), 395–420 (1965)

    Article  Google Scholar 

  24. Gini, C.W.: Variability and mutability, contribution to the study of statistical distributions and relations. Studi cconomico-giuridici della r. Universita de cagliari (1912). Reviewed in: Light, R.J., Margolin, B.H.: An analysis of variance for categorical data. J. Am. Stat. Assoc. 66, 534–544 (1971)

    Google Scholar 

  25. Jakulin, A.: Machine learning based on attribute interactions. Ph.D. thesis, University of Ljubljana (2005)

    Google Scholar 

  26. Yang, H.H., Moody, J.: Data visualization and feature selection: new algorithms for nongaussian data. In: Advances in Neural Information Processing Systems, pp. 687–693 (2000)

    Google Scholar 

  27. Tang, J., Alelyani, S., Liu, H.: Feature selection for classification: a review. In: Data Classification: Algorithms and Applications, pp. 37–64 (2014)

    Google Scholar 

  28. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  Google Scholar 

  29. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a new algorithm. In: AAAI, vol. 2, pp. 129–134 (1992)

    Google Scholar 

  30. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint L2, 1-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)

    Google Scholar 

  31. Nie, F., Xiang, S., Jia, Y., Zhang, C., Yan, S.: Trace ratio criterion for feature selection. In: AAAI, vol. 2, pp. 671–676 (2008)

    Google Scholar 

  32. Weirauch, M.T.: Gene coexpression networks for the analysis of DNA microarray data. Appl. Stat. Netw. Biol.: Methods Syst. Biol. 1, 215–250 (2011)

    Article  Google Scholar 

  33. Bello, S.M., et al.: Disease ontology: improving and unifying disease annotations across species. Dis. Models Mech. 11(3), dmm032839 (2018)

    Article  Google Scholar 

  34. Ashburner, M., et al.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25 (2000)

    Article  Google Scholar 

  35. Köhler, S., et al.: The human phenotype ontology in 2017. Nucleic Acids Res. 45(D1), D865–D876 (2016)

    Article  Google Scholar 

  36. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  37. Alanis-Lobato, G., Andrade-Navarro, M.A., Schaefer, M.H.: HIPPIE v2.0: enhancing meaningfulness and reliability of protein-protein interaction networks. Nucleic Acids Res. 45(D1), D408–D414 (2016)

    Article  Google Scholar 

  38. Wold, S., Sjöström, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. Syst. 58(2), 109–130 (2001)

    Article  Google Scholar 

  39. Morrison, J.L., Breitling, R., Higham, D.J., Gilbert, D.R.: GeneRank: using search engine technology for the analysis of microarray experiments. BMC Bioinf. 6(1), 233 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thuc Duy Le .

Editor information

Editors and Affiliations

Ethics declarations

This work has been supported by the National Natural Science Foundation of China (61702069, 61963001), the Yunnan Fundamental Research Projects (202001AT070024), the NHMRC Grant (1123042), and the Australian Research Council Discovery Grant (DP170101306).

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Nguyen, T., Truong, B., Liu, L., Li, J., Le, T.D. (2020). Computational Methods for Predicting Autism Spectrum Disorder from Gene Expression Data. In: Yang, X., Wang, CD., Islam, M.S., Zhang, Z. (eds) Advanced Data Mining and Applications. ADMA 2020. Lecture Notes in Computer Science(), vol 12447. Springer, Cham. https://doi.org/10.1007/978-3-030-65390-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65390-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65389-7

  • Online ISBN: 978-3-030-65390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics