Skip to main content

An Ontological Model for the Failure Detection in Power Electric Systems

  • Conference paper
  • First Online:
Knowledge Graphs and Semantic Web (KGSWC 2020)

Abstract

Several ontologies have been developed for the detection of failures in electric power systems. However, these ontologies have been developed for specific aspects of the electricity grid and do not consider the necessary elements for the representation of a fault detection system based on Smart Grid trends. In this paper, we describe the development process of EPFDO, an ontology composed of a network of ontologies that allow the representation of intelligent system elements. EPFDO includes Sensors cases, Electrical Demand Management, Geographical Location, Operations, among other aspects that make EPFDO a more useful system for researchers who may have a standard for fault detection according to domain requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WGS84 Geo Positioning: an RDF vocabulary (2007)

    Google Scholar 

  2. Bernaras, A., Laresgoiti, I., Bartolome, N., Corera, J.: An ontology for fault diagnosis in electrical networks. In: Proceedings of International Conference on Intelligent System Application to Power Systems, pp. 199–203 (1996). https://doi.org/10.1109/ISAP.1996.501068

  3. Brickley, D., Miller, L.: FOAF Vocabulary Specification 99 (2014)

    Google Scholar 

  4. Cuenca, J., Larrinaga, F., Curry, E.: A unified semantic ontology for energy management applications, vol. 1936, pp. 86–97 (2017)

    Google Scholar 

  5. Dalianis, H., Persson, F.: Reuse of an ontology in an electrical distribution network domain. In: Proceedings of the AAAI 1997 Spring Symposium Series, Ontological Engineering, pp. 25–32 (1997)

    Google Scholar 

  6. Daniele, L., Solanki, M., den Hartog, F., Roes, J.: Interoperability for smart appliances in the IoT world. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 21–29. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_3

    Chapter  Google Scholar 

  7. Das, S., Bhowmik, S., Giri, C.: End device energy optimization in ASPL for semantic sensor network, pp. 1–6. IEEE, India (2017). https://doi.org/10.1109/ANTS.2017.8384148. https://ieeexplore.ieee.org/document/8384148

  8. García-Duarte, D., Leiva-Mederos, A., Galvez-Lio, D.: Electric power fault detection: ontolgy (2019). www.semanticweb.org/doymer/ontologies/2019/11/red

  9. Gillani, S., Laforest, F., Picard, G.: A generic ontology for prosumer-oriented smart grid. In: 3rd Workshop on Energy Data Management at 17th International Conference on Extending Database Technology, Greece (2014). https://hal-emse.ccsd.cnrs.fr/emse-00948316

  10. Haase, P., et al.: The NeOn ontology engineering toolkit. In: WWW 2008 Developers Track (2008). https://www.aifb.kit.edu/web/Inproceedings1757

  11. Huang, Y., Zhou, X.: Knowledge model for electric power big data based on ontology and semantic web. CSEE J. Power Energy Syst. 1(1), 19–27 (2015). https://doi.org/10.17775/CSEEJPES.2015.00003. Conference Name: CSEE Journal of Power and Energy Systems

    Article  Google Scholar 

  12. Kofler, M.J., Reinisch, C., Kastner, W.: A semantic representation of energy-related information in future smart homes. Energy Build. 47, 169–179 (2012). https://doi.org/10.1016/j.enbuild.2011.11.044. http://www.sciencedirect.com/science/article/pii/S0378778811005901

  13. Kolozali, S., Bermudez, M., Barnaghi, P.: Stream Annotation Ontology (2016)

    Google Scholar 

  14. Kucuk, D., Salor, O., İnan, T., Cadirci, I., Ermis, M.: PQONT: a domain ontology for electrical power quality. Adv. Eng. Inform. 24(1), 84–95 (2010)

    Article  Google Scholar 

  15. Lin, H., Tang, W.H., Ji, T.Y., Wu, Q.H.: A novel approach to power transformer fault diagnosis based on ontology and Bayesian network, pp. 1–6. IEEE (2014)

    Google Scholar 

  16. Liu, L., Zu, X., Xu, R.: Multi-agent system coordination architecture and its use in electric power decision support system, pp. 731–736. IEEE (2008)

    Google Scholar 

  17. Noy, N.F., Musen, M.A.: Algorithm and tool for automated ontology merging and alignment. In: Proceedings of the 17th National Conference on Artificial Intelligence (AAAI 2000). Available as SMI technical report SMI-2000-0831, vol. 115. AAAI (2000)

    Google Scholar 

  18. OCG, W.: Semantic Sensor Network Ontology (2017)

    Google Scholar 

  19. Padron Hernández, S.: Inteligencia artificial en la operación de redes eléctricas. Aplicación a sistemas aislados. Ph.D. thesis, Universidad de Las Palmas de Gran Canaria (2015)

    Google Scholar 

  20. Pezeshki, H., Wolfs, P., Johnson, M.: Multi-agent systems for modeling high penetration photovoltaic system impacts in distribution networks. In: 2011 IEEE PES Innovative Smart Grid Technologies, pp. 1–8, November 2011. https://doi.org/10.1109/ISGT-Asia.2011.6167149

  21. Poveda Villalon, M.: Ontology evaluation: a pitfall-based approach to ontology diagnosis. Ph.D. thesis, Universidad Politecnica de Madrid, Escuela Tecnica Superior de Ingenieros Informaticos (2016)

    Google Scholar 

  22. Puebla-Martínez, M.E., Perea-Ortega, J.M., Simón-Cuevas, A., Romero, F.P.: Automatic expansion of spatial ontologies for geographic information retrieval. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 854, pp. 659–670. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91476-3_54

    Chapter  Google Scholar 

  23. Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodríguez-Doncel, V., García-Castro, R., Gómez-Pérez, A.: Guidelines for Linked Data generation and publication: an example in building energy consumption. Autom. Constr. 57, 178–187 (2015)

    Article  Google Scholar 

  24. Samirmi, F.D., Tang, W., Wu, H.: Power transformer condition monitoring and fault diagnosis with multi-agent system based on ontology reasoning. In: 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1-6 (2013). ISSN: 2157-4847

    Google Scholar 

  25. Samirmi, F.D., Tang, W., Wu, Q.: Fuzzy ontology reasoning for power transformer fault diagnosis. Adv. Electr. Comput. Eng. 15(4), 107–114 (2015). https://doi.org/10.4316/AECE.2015.04015

    Article  Google Scholar 

  26. Santofimia, M.J., del Toro, X., Roncero-Sánchez, P., Moya, F., Martinez, M.A., Lopez, J.C.: A qualitative agent-based approach to power quality monitoring and diagnosis. Integr. Comput. Aided Eng. 17(4), 305–319 (2010)

    Article  Google Scholar 

  27. Santos, G.J.L.d.: Ontologies for the interoperability of multiagent electricity markets simulation platforms. Ph.D. thesis (2015)

    Google Scholar 

  28. Santos, J., Braga, L., Cohn, A.G.: Engineering time in an ontology for power systems through the assembling of modular ontologies, pp. 255–258 (2010)

    Google Scholar 

  29. Stavropoulos, T.G., Vrakas, D., Vlachava, D., Bassiliades, N.: BOnSAI: a smart building ontology for ambient intelligence. In: Proceedings of the 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS 2012, pp. 1–12. Association for Computing Machinery, New York, June 2012. https://doi.org/10.1145/2254129.2254166

  30. Suárez-Figueroa, M.C.: NeOn Methodology for building ontology networks: specification, scheduling and reuse. Ph.D. thesis, Informatica (2010)

    Google Scholar 

  31. Wang, D., Tang, W.H., Wu, Q.H.: Ontology-based fault diagnosis for power transformers. In: IEEE PES General Meeting, pp. 1–8, July 2010. https://doi.org/10.1109/PES.2010.5589575. iSSN 1944-9925

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusniel Hidalgo-Delgado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mederos, A.L., García-Duarte, D., Lio, D.G., Hidalgo-Delgado, Y., Ruíz, J.A.S. (2020). An Ontological Model for the Failure Detection in Power Electric Systems. In: Villazón-Terrazas, B., Ortiz-Rodríguez, F., Tiwari, S.M., Shandilya, S.K. (eds) Knowledge Graphs and Semantic Web. KGSWC 2020. Communications in Computer and Information Science, vol 1232. Springer, Cham. https://doi.org/10.1007/978-3-030-65384-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65384-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65383-5

  • Online ISBN: 978-3-030-65384-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics