Skip to main content

TemporalRI: A Subgraph Isomorphism Algorithm for Temporal Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications IX (COMPLEX NETWORKS 2020 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 944))

Included in the following conference series:

Abstract

Temporal networks are graphs where each edge is associated with a timestamp or an interval indicating when an interaction between two nodes happens. The Temporal Subgraph Isomorphism (TSI) problem aims at identifying all the subgraphs of a temporal network (called target) matching a smaller temporal network (called query), such that matched target edges satisfy the same chronological order of query edges. Few existing algorithms deal with the TSI problem and most of them can be applied only to small or specific queries. In this paper we propose TemporalRI, a subgraph isomorphism algorithm for temporal networks, inspired by RI algorithm. We show that our algorithm can handle queries of any size and any topology. Experiments on real networks show that TemporalRI is very efficient, especially for large queries and targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is equivalent to the notion of non-induced subgraph. For induced subgraphs, we have \(E_S = (V_S \times V_S) \cap E\).

References

  1. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by postponing cartesian products. In: SIGMOD 2016, pp. 1199–1214 (2016). https://doi.org/10.1145/2882903.2915236

  2. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., Ferro, A.: A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinform. 14(Suppl 7), 1–13 (2013). https://doi.org/10.1186/1471-2105-14-S7-S13

    Article  Google Scholar 

  3. Bonnici, V., Giugno, R.: On the variable ordering in subgraph isomorphism algorithms. IEEE/ACM Trans. Comput. Biol. Bioinform. 14(1), 193–203 (2017). https://doi.org/10.1109/TCBB.2016.2515595

    Article  Google Scholar 

  4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004). https://doi.org/10.1109/TPAMI.2004.75

    Article  Google Scholar 

  5. Crawford, J., Milenkovic, T.: ClueNet: Clustering a temporal network based on topological similarity rather than denseness. PLoS ONE 13(5), e0195993 (2018). https://doi.org/10.1371/journal.pone.0195993

    Article  Google Scholar 

  6. Divakaran, A., Mohan, A.: Temporal link prediction: a survey. New Gener. Comput. 38, 213–258 (2020). https://doi.org/10.1007/s00354-019-00065-z

    Article  Google Scholar 

  7. Han, W., Lee, J., Lee, J.H.: Turboiso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In: SIGMOD 2013, pp. 337–348 (2013). https://doi.org/10.1145/2463676.2465300

  8. Han, M., Kim, H., Gu, G., Park, K., Han, W.: Efficient subgraph matching: harmonizing dynamic programming, adaptive matching order, and failing set together. In: SIGMOD 2019, pp. 1429–1446 (2019). https://doi.org/10.1145/3299869.3319880

  9. Hiraoka, T., Masuda, N., Li, A., Jo, H.: Modeling temporal networks with bursty activity patterns of nodes and links. Phys. Rev. Res. 2(2), 023073 (2020). https://doi.org/10.1103/PhysRevResearch.2.023073

    Article  Google Scholar 

  10. Holme, P., Saramaki, J.: Temporal networks. Phys. Rep. 519, 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001

    Article  Google Scholar 

  11. Holme, P., Saramaki, J.: Temporal Network Theory. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-23495-9

    Book  MATH  Google Scholar 

  12. Hulovatyy, Y., et al.: Exploring the structure and function of temporal networks with dynamic graphlets. Bioinformatics 31(12), i171–i180 (2015). https://doi.org/10.1093/bioinformatics/btv227

    Article  Google Scholar 

  13. Kim, K., Seo, I., Han, W.S., Lee, J.H., Hong, S., Chafi, H., Shin, H., Jeong, G.: TurboFlux: a fast continuous subgraph matching system for streaming graph data. In: SIGMOD 2018, pp. 411–426 (2018). https://doi.org/10.1145/3183713.3196917

  14. Lv, L., et al.: PageRank centrality for temporal networks. Phys. Lett. A 383(12), 1215–1222 (2019). https://doi.org/10.1016/j.physleta.2019.01.041

    Article  Google Scholar 

  15. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramaki, J.: Temporal motifs in time-dependent networks. J. Stat. Mech. Theor. Exp. 2011(11), P11005 (2011). https://doi.org/10.1088/1742-5468/2011/11/p11005

    Article  MATH  Google Scholar 

  16. Liu, P., Benson, A.R., Charikar, M.: Sampling methods for counting temporal motifs. In: Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, pp. 294–302 (2019). https://doi.org/10.1145/3289600.3290988

  17. Mackey, P., Porterfield, K., Fitzhenry, E., Choudhury, S., Chin, G.: A chronological edge-driven approach to temporal subgraph isomorphism. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3972–3979 (2018). https://doi.org/10.1109/BigData.2018.8622100

  18. Masuda, N., Lambiotte, R.: A Guide to Temporal Networks. World Scientific, London (2016). https://doi.org/10.1142/q0268

    Book  MATH  Google Scholar 

  19. Masuda, N., Holme, P.: Small inter-event times govern epidemic spreading on networks. Phys. Rev. Res. 2(2), 023163 (2020). https://doi.org/10.1103/PhysRevResearch.2.023163

    Article  Google Scholar 

  20. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, pp. 601–610 (2017).https://doi.org/10.1145/3018661.3018731

  21. Petit, J., Gueuning, M., Carletti, T., Lauwens, B., Lambiotte, R.: Random walk on temporal networks with lasting edges. Phys. Rev. E 98(5), 052307 (2018). https://doi.org/10.1103/PhysRevE.98.052307

    Article  Google Scholar 

  22. Redmond, U., Cunningham, P.: Temporal subgraph isomorphism. In: Proceedings of 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 1451–1452 (2013). https://doi.org/10.1145/2492517.2492586

  23. Redmond, U., Cunningham, P.: Subgraph isomorphism in temporal networks. arXiv preprint arXiv:1605.02174 (2016)

  24. Rocha, L.E., Masuda, N., Holme, P.: Sampling of temporal networks: methods and biases. Phys. Rev. E 96(5), 052302 (2017). https://doi.org/10.1103/PhysRevE.96.052302

    Article  Google Scholar 

  25. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2) (2018). https://doi.org/10.1145/3172867

  26. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 4292–4293 (2015). https://doi.org/10.5555/2888116.2888372

  27. Singh, E.A., Cherifi, H.: Centrality-based opinion modeling on temporal networks. IEEE Access 8, 1945–1961 (2020). https://doi.org/10.1109/ACCESS.2019.2961936

    Article  Google Scholar 

  28. Sun, X., Tan, Y., Wu, Q., Wang, J., Shen, C.: New algorithms for counting temporal graph pattern. Symmetry 11(10), 1188 (2019). https://doi.org/10.3390/sym11101188

    Article  Google Scholar 

  29. Sun, X., Tan, Y., Wu, Q., Chen, B., Shen, C.: TM-Miner: TFS-based algorithm for mining temporal motifs in large temporal network. IEEE Access 7, 49778–49789 (2019). https://doi.org/10.1109/ACCESS.2019.2911181

    Article  Google Scholar 

  30. Sun, S., Luo, Q.: Subgraph matching with effective matching order and indexing. Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.2980257

    Article  Google Scholar 

  31. Tizzani, M., Lenti, S., Ubaldi, E., Vezzani, A., Castellano, C., Burioni, R.: Epidemic spreading and aging in temporal networks with memory. Phys. Rev. E 98(6), 062315 (2018). https://doi.org/10.1103/PhysRevE.98.062315

    Article  Google Scholar 

  32. Torricelli, M., Karsai, M., Gauvin, L.: weg2vec: Event embedding for temporal networks. Sci. Rep. 10, 7164 (2020). https://doi.org/10.1038/s41598-020-63221-2

    Article  Google Scholar 

  33. Tsalouchidou, I., et al.: Temporal betweenness centrality in dynamic graphs. Int. J. Data Sci. Anal. 9, 257–272 (2020). https://doi.org/10.1007/s41060-019-00189-x

    Article  Google Scholar 

  34. Williams, O.E., Lillo, F., Latora, V.: Effects of memory on spreading processes in non-Markovian temporal networks. New J. Phys. 21(4), 043028 (2019). https://doi.org/10.1088/1367-2630/ab13fb

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Micale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Locicero, G., Micale, G., Pulvirenti, A., Ferro, A. (2021). TemporalRI: A Subgraph Isomorphism Algorithm for Temporal Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-65351-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65351-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65350-7

  • Online ISBN: 978-3-030-65351-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics