Skip to main content

Non-imaging and Radiopharmacy Instrumentation in Nuclear Medicine

  • Chapter
  • First Online:
Basic Sciences of Nuclear Medicine

Abstract

Nuclear medicine facilities must have essential accessories and equipment to meet quality assurance requirements and to comply with national or international standards. These equipments should be used under well understanding of their capabilities, limitations, and environmental conditions. They can be classified into non-imaging, reference radioactive sources, and radiopharmacy-related equipment and tools. Non-imaging equipment category includes dose calibrator, well counter, thyroid uptake probe, intraoperative probes, survey meters, area monitors, X-ray computed tomography (CT) dosimetry, and others. The second category includes an array of radioactive reference sources that commonly used in calibration and daily quality control and assurance. The last category comprises those equipments that commonly used in radiopharmacy laboratory including high-performance liquid chromatography, thin layer chromatography scanner, gas chromatography, gamma spectrometer, pH meter, and specialized tools for the determination of bacterial endotoxins. Preparation and dispensing of radiopharmaceuticals should be carried out in special conditions of particle count and microbiological monitoring that could be achieved under aseptic conditions or use of laminar flow cabinet of proper grade. Moreover, labeled isotopes or finally formulated products have to pass through specific quality checks and acceptance criteria so as to maintain patient safety and achieve optimal diagnostic quality. Implementation of those equipment and tools into nuclear medicine daily practice is obviously integral part of the overall success of the clinical service.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Committee EP, Busemann Sokole E, Plachcinska A, Britten A, et al. Routine quality control recommendations for nuclear medicine instrumentation. Eur J Nucl Med Mol Imaging. 2010;37(3):662–71.

    Article  Google Scholar 

  2. Gadd R, Baker M, Nijran KS, Owens S, Thomson W, Woods MJ, Zananiri F. Measurement good practice guide no. 93: protocol for establishing and maintaining the calibration of medical radionuclide calibrators and their quality control prepared by a joint working party composed of representatives from the following: Institute of Physics and Engineering in Medicine, Ionising Radiation Metrology Consultants Ltd. and National Physical Laboratory; 2006. p. 1368–6550.

    Google Scholar 

  3. Carey JE, Byrne P, DeWerd L, Lieto R, Petry N. The selection, use, calibration, and quality assurance of radionuclide calibrators used in nuclear medicine. AAPM report no. 181; 2012.

    Google Scholar 

  4. https://m.biodex.com/nuclear-medicine/products/radiopharmacy/dose-calibration/atomlab-500-dose-calibrator. Accessed 23 Aug 2020.

  5. ACR–SNM–SPR practice guidelines for the performance of thyroid scintigraphy and uptake measurements. American College of Radiology; 2009.

    Google Scholar 

  6. Bailey DL, Humm JL, Todd-Pokropek van Aswegen A, technical editors. Nuclear medicine physics: a handbook for teachers and students. Vienna: International Atomic Energy Agency; 2014.

    Google Scholar 

  7. Becker D, Charkes ND, Dworkin H, Hurley J, McDougall IR, Price D, et al. Procedure guideline for thyroid uptake measurement: 1.1. Society of Nuclear Medicine. J Nucl Med. 1996;37:1266–8.

    CAS  PubMed  Google Scholar 

  8. Menon BK, Uday AS, Singh BN. γ-Camera-based method for measuring the γ-count from 131-I capsules: an alternative to the thyroid uptake probe. J Nucl Med Technol. 2018;46:45–8. https://doi.org/10.2967/jnmt.117.198077.

    Article  Google Scholar 

  9. Harris CC, Bigelow RR, Francis JE, et al. A Csi(Ti)-crystal surgical scintillation probe. Nucleonics. 1956;14:102–8.

    Google Scholar 

  10. IAEA publications. Guided intraoperative scintigraphic tumour targeting (GOSTT): implementing advanced hybrid molecular imaging and non-imaging probes for advanced cancer management. IAEA human health series ISSN 2075–3772;29, Vienna; 2014.

    Google Scholar 

  11. NCRP Report No. 147—structural shielding design for medical X-ray imaging facilities; 2004.

    Google Scholar 

  12. Benedict SH. Review of radiation oncology physics: a handbook for teachers and students. J Appl Clin Med Phys. 2004;5:91–2.

    PubMed Central  Google Scholar 

  13. Reilly D, Ensslin N, Smith H Jr, editors. Passive nondestructive assay of nuclear materials. No. NUREG/CR—5550. Nuclear Regulatory Commission; 1991.

    Google Scholar 

  14. Claus G, Irène B, editors. Handbook of particle detection and imaging. Berlin: Springer; 2011.

    Google Scholar 

  15. IAEA publications. Quality assurance programme for computed tomography: diagnostic and therapy applications. IAEA human health series ISSN 2075–4772;19, Vienna; 2012.

    Google Scholar 

  16. American Association of Physicists in Medicine. The measurement, reporting, and management of radiation dose in CT. AAPM report no. 96, ISSN: 0271-7344; 2008.

    Google Scholar 

  17. Zimmerman BE, Cessna JT. Development of a traceable calibration methodology for solid 68Ge/68Ga sources used as a calibration surrogate for 18F in radionuclide activity calibrators. J Nucl Med. 2010;51:448–53.

    Article  CAS  Google Scholar 

  18. Busemann-Sokole E, editor. IAEA quality control atlas for scintillation camera systems. No. 1141. International Atomic Energy Agency; 2003.

    Google Scholar 

  19. Bergeron DE, Cessna JT, Coursey BM, Fitzgerald R, Zimmerman BE. A review of NIST primary activity standards for 18F: 1982 to 2013. J Res Natl Inst Stand Technol. 2014;119:371–96.

    Article  Google Scholar 

  20. https://www.nist.gov/news-events/news/2015/01/prototype-first-traceable-pet-mr-phantom. Accessed 22 Aug 2020.

  21. EANM. The radiopharmacy: a technologist’ s guide; 2016. p. 22–3.

    Google Scholar 

  22. Operational guidance on hospital radiopharmacy: a safe and effective approach. Vienna: International Atomic Energy Agency; 2008.

    Google Scholar 

  23. Newsom S. Class II (laminar flow) biological safety cabinet. J Clin Pathol. 1979;32:505–13.

    Article  CAS  Google Scholar 

  24. Chosewood L, Wilson D. Biosafety in microbiological and biomedical laboratories. US Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health; 2009.

    Google Scholar 

  25. Zabel P, Robichaud N, Hiltz A. Facilities and equipment for aseptic and safe handling of blood products. J Nucl Med Technol. 1992;20:236–41.

    Google Scholar 

  26. https://www.gelifesciences.com/en/us/solutions/lab-filtration/knowledge-center/hplc-pain-points-part-1. Accessed 22 Aug 2020.

  27. Dahimiwal SM, Thorat DB, Jain NP, Jadhav VB, Patil PB. A review on high performance liquid chromatography. Int J Pharm Res. 2013;5:1–6.

    Google Scholar 

  28. Silva RGC, Bottoli CBG, Collins CH. New silica gel-based monolithic column for nano-liquid chromatography, used in the HILIC mode. J Chromatogr Sci. 2012;50:649–57. https://doi.org/10.1093/chromsci/bms081.

    Article  CAS  PubMed  Google Scholar 

  29. Swartz M. HPLC detectors: a brief review. J Liq Chromatogr Relat Technol. 2010;33:1130–50. https://doi.org/10.1080/10826076.2010.484356.

    Article  CAS  Google Scholar 

  30. Zhang B, Li X, Yan B. Advances in HPLC detection-towards universal detection. Anal Bioanal Chem. 2008;390:299–301. https://doi.org/10.1007/s00216-007-1633-0.

    Article  CAS  PubMed  Google Scholar 

  31. Sunil A. HPLC detectors, their types and use: a review. Org Med Chem Int J. 2018;6:3–6. https://doi.org/10.19080/omcij.2018.06.555700.

    Article  Google Scholar 

  32. Arti T, Ramni K, Navneet K, Ashutosh U, Suri OP. High performance liquid chromatography detectors—a review. Int Res J Pharm. 2011;2:1–7.

    Google Scholar 

  33. Vallabhajosula S. Molecular imaging: radiopharmaceuticals for PET and SPECT. New York: Springer; 2009. https://doi.org/10.1017/CBO9781107415324.004.

  34. Saha GB. Fundamentals of nuclear pharmacy. 7th ed. Cham: Springer; 2018.

    Book  Google Scholar 

  35. Khalil MM, editor. Basic science of PET imaging. Dordrecht: Springer; 2016. https://doi.org/10.1007/978-3-319-40070-9.

    Book  Google Scholar 

  36. Kilian K, Chabecki B, Kiec J, Kunka A, Panas B, Wójcik M, et al. Synthesis, quality control and determination of metallic impurities in 18F-fludeoxyglucose production process. Rep Pract Oncol Radiother. 2014;19:22–31. https://doi.org/10.1016/j.rpor.2014.03.001.

    Article  Google Scholar 

  37. Koziorowski J. A simple method for the quality control of [18F]FDG. Appl Radiat Isot. 2010;68:1740–2. https://doi.org/10.1016/j.apradiso.2010.03.006.

    Article  CAS  PubMed  Google Scholar 

  38. Mihon M, Tuța C, Lavric V, Niculae D, Drăgănescu D. Quality control and stability study of the sodium fluoride injection [18F]NaF. Farmacia. 2015;63:765–9.

    CAS  Google Scholar 

  39. Silveira MB, Soares MA, Valente ES, Waquil SS, Ferreira AV, dos Santos RG, et al. Synthesis, quality control and dosimetry of the radiopharmaceutical 18F-sodium fluoride produced at the center for development of nuclear technology-CDTN. Braz J Pharm Sci. 2010;46:563–9. https://doi.org/10.1590/S1984-82502010000300021.

    Article  CAS  Google Scholar 

  40. Velikyan I. 68Ga-based radiopharmaceuticals: production and application relationship. Molecules. 2015;20(7):12913–43.

    Article  CAS  Google Scholar 

  41. Spangenberg B, Poole CF, Weins C, editors. Quantitative thin-layer chromatography: a practical survey. Berlin: Springer; 2011.

    Google Scholar 

  42. Guiochon G, Guillemin CL. Quantitative gas chromatography for laboratory analyses and on-line progress control. Amsterdam: Elsevier; 1988.

    Google Scholar 

  43. Rahman MM, Abd El-Aty AM, Choi J-H, Shin H-C, Shin SC, Shim J-H. Basic overview on gas chromatography columns. Anal Sep Sci. 2015:823–34. https://doi.org/10.1002/9783527678129.assep024.

  44. Knoll GF. Radiation detection and measurement. 3rd ed. New York: Wiley; 2000. https://doi.org/10.1002/hep.22108.

    Book  Google Scholar 

  45. Karastogianni S, Girousi S, Sotiropoulos S. pH: principles and measurement. 1st ed. Elsevier Ltd; 2015. https://doi.org/10.1016/B978-0-12-384947-2.00538-9.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Anezi, E., Hosny, T., Khalil, M.M. (2021). Non-imaging and Radiopharmacy Instrumentation in Nuclear Medicine. In: Khalil, M.M. (eds) Basic Sciences of Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-65245-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65245-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65244-9

  • Online ISBN: 978-3-030-65245-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics