Skip to main content

Towards a Phylogenetic Measure to Quantify HIV Incidence

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (BNAIC 2019, BENELEARN 2019)

Abstract

One of the cornerstones in combating the HIV pandemic is the ability to assess the current state and evolution of local HIV epidemics. This remains a complex problem, as many HIV infected individuals remain unaware of their infection status, leading to parts of HIV epidemics being undiagnosed and under-reported. We first present a method to learn epidemiological parameters from phylogenetic trees, using approximate Bayesian computation (ABC). The epidemiological parameters learned as a result of applying ABC are subsequently used in epidemiological models that aim to simulate a specific epidemic. Secondly, we continue by describing the development of a tree statistic, rooted in coalescent theory, which we use to relate epidemiological parameters to a phylogenetic tree, by using the simulated epidemics. We show that the presented tree statistic enables differentiation of epidemiological parameters, while only relying on phylogenetic trees, thus enabling the construction of new methods to ascertain the epidemiological state of an HIV epidemic. By using genetic data to infer epidemic sizes, we expect to enhance our understanding of the portions of the infected population in which diagnosis rates are low.

These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. UNAIDS. Fact sheet - latest global and regional statistics on the status of the aids epidemic, July 2017

    Google Scholar 

  2. Hightow-Weidman, L.B., Golin, C.E., Green, K., Shaw, E.N.P., MacDonald, P.D.M., Leone, P.A.: Identifying people with acute HIV infection: demographic features, risk factors, and use of health care among individuals with AHI in North Carolina. AIDS Behav. 13(6), 1075–1083 (2009)

    Article  Google Scholar 

  3. Burton, G.F., Keele, B.F., Estes, J.D., Thacker, T.C., Gartner, S.: Follicular dendritic cell contributions to HIV pathogenesis. In: Seminars in Immunology, vol. 14, pp. 275–284. Elsevier (2002)

    Google Scholar 

  4. Theys, K., Libin, P., Pineda-Pena, A.-C., Nowe, A., Vandamme, A.-M., Abecasis, A.B.: The impact of HIV-1 within-host evolution on transmission dynamics. Curr. Opin. Virol. 28, 92–101 (2018)

    Article  Google Scholar 

  5. Begier, E.M., et al.: Undiagnosed HIV infection among New York City jail entrants, 2006: results of a blinded serosurvey. JAIDS J. Acquir. Immune Defic. Syndr. 54(1), 93–101 (2010)

    Article  Google Scholar 

  6. van Sighem, A., et al.: Estimating HIV incidence, time to diagnosis, and the undiagnosed HIV epidemic using routine surveillance data. Epidemiology 26(5), 653 (2015)

    Article  Google Scholar 

  7. Mammone, A., et al.: How many people are living with undiagnosed HIV infection? an estimate for Italy, based on surveillance data. AIDS 30(7), 1131 (2016)

    Article  Google Scholar 

  8. Vajpayee, M., Mohan, T.: Current practices in laboratory monitoring of HIV infection. Indian J. Med. Res. 134(6), 801 (2011)

    Article  Google Scholar 

  9. Sunnåker, M., Busetto, A.G., Numminen, E., Corander, J., Foll, M., Dessimoz, C.: Approximate bayesian computation. PLoS Comput. Biology 9(1), e1002803 (2013)

    Article  MathSciNet  Google Scholar 

  10. Ridley, M.: Evolution. John Wiley & Sons Incorporated (2009)

    Google Scholar 

  11. Hennig, W.: Phylogenetic systematics. Ann. Rev. Entomol. 10(1), 97–116 (1965)

    Article  Google Scholar 

  12. Salemi, M., Lemey, P., Vandamme, A.-M.: The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  13. Felsenstein, J.: Inferring Phylogenies, vol. 2. Sinauer associates Sunderland, MA (2004)

    Google Scholar 

  14. Chor, B., Tuller, T.: Finding a maximum likelihood tree is hard. J. ACM (JACM) 53(5), 722–744 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Roch, S.: A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 3(1), 92 (2006)

    Article  Google Scholar 

  16. Freed, E.O.: HIV-1 replication. Somatic Cell Mol. Genet. 26(1–6), 13–33 (2001)

    Google Scholar 

  17. Gallo, R., Wong-Staal, F., Montagnier, L., Haseltine, W.A., Yoshida, M.: HIV/HTLV gene nomenclature. Nature 333(6173), 504–504 (1988)

    Article  Google Scholar 

  18. Kindt, T.J., Goldsby, R.A., Osborne, B.A., Kuby, J.: Kuby immunology. Macmillan (2007)

    Google Scholar 

  19. Rambaut, A., Posada, D., Crandall, K.A., Holmes, E.C.: The causes and consequences of HIV evolution. Nature reviews. Genetics 5(1), 52 (2004)

    Article  Google Scholar 

  20. Cohen, M.S., Hellmann, N., Levy, J.A., DeCock, K., Lange, J.: The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J. Clin. Inv. 118(4), 1244 (2008)

    Article  Google Scholar 

  21. Fauci, A.S., Pantaleo, G., Stanley, S., Weissman, D.: Immunopathogenic mechanisms of HIV infection. Ann. Internal Medi. 124(7), 654–663 (1996)

    Article  Google Scholar 

  22. Ferguson, M.R., Rojo, D.R., von Lindern, J.J., O’Brien, W.A.: HIV-1 replication cycle. Clin. Lab. Med. 22(3), 611–635 (2002)

    Article  Google Scholar 

  23. Lemey, P., Rambaut, A., Pybus, O.G.: HIV evolutionary dynamics within and among hosts. AIDs Rev. 8(3), 125–140 (2006)

    Google Scholar 

  24. Li, W.-H., Tanimura, M., Sharp, P.M.: Rates and dates of divergence between AIDS virus nucleotide sequences. Mol. Biol. Evol. 5(4), 313–330 (1988)

    Google Scholar 

  25. Wei, X., et al.: Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373(6510), 117–122 (1995)

    Article  Google Scholar 

  26. Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M., Markowitz, M.: Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510), 123–126 (1995)

    Article  Google Scholar 

  27. Holmes, E.C.: On the origin and evolution of the human immunodeficiency virus (HIV). Biol. Rev. 76(2), 239–254 (2001)

    Article  Google Scholar 

  28. Hahn, B.H., Shaw, G.M., De, K.M., Sharp, P.M., et al.: AIDS as a zoonosis: scientific and public health implications. Science 287(5453), 607–614 (2000)

    Article  Google Scholar 

  29. Sharp, P.M., Hahn, B.H.: Origins of HIV and the AIDS pandemic. Cold Spring Harbor Perspect. Med. 1(1), 006841 (2011)

    Article  Google Scholar 

  30. de Silva, T.I., Cotten, M., Rowland-Jones, S.L.: HIV-2: the forgotten AIDS virus. Trends Microbiol. 16(12), 588–595 (2008)

    Article  Google Scholar 

  31. Merson, M.H., O’Malley, J., Serwadda, D., Apisuk, C.: The history and challenge of HIV prevention. Lancet 372(9637), 475–488 (2008)

    Article  Google Scholar 

  32. Peeters, M., Gueye, A., Mboup, S., Bibollet-Ruche, F., Ekaza, E., Mulanga, C., Ouedrago, R., Gandji, R., Mpele, P., Dibanga, G., et al.: Geographical distribution of HIV-1 group O viruses in Africa. Aids 11(4), 493–498 (1997)

    Article  Google Scholar 

  33. Vallari, A., et al.: Four new HIV-1 group N isolates from cameroon: prevalence continues to be low. AIDS Res. Hum. Retroviruses 26(1), 109–115 (2010)

    Article  Google Scholar 

  34. Vallari, A., Holzmayer, V., Harris, B., Yamaguchi, J., Ngansop, C., Makamche, F., Mbanya, D., Kaptué, L., Ndembi, N., Gürtler, L., et al.: Confirmation of putative HIV-1 group P in Cameroon. J. Virol. 85(3), 1403–1407 (2011)

    Article  Google Scholar 

  35. Goudsmit, J.: Viral sex: The nature of AIDS. Oxford University Press on Demand (1997)

    Google Scholar 

  36. Buonaguro, L., Tornesello, M.L., Buonaguro, F.M.: Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications. J. Virol. 81(19), 10209–10219 (2007)

    Article  Google Scholar 

  37. Taylor, B.S., Sobieszczyk, M.E., McCutchan, F.E., Hammer, S.M.: The challenge of HIV-1 subtype diversity. New Engl. J. Med. 358(15), 1590–1602 (2008)

    Article  Google Scholar 

  38. Santiago, M.L., et al.: Simian immunodeficiency virus infection in free-ranging sooty mangabeys (Cercocebus atys atys) from the Tai Forest, Cote d’Ivoire: implications for the origin of epidemic human immunodeficiency virus type 2. J. Virol. 79(19), 12515–12527 (2005)

    Article  Google Scholar 

  39. Baeten, J.M., et al.: HIV-1 subtype D infection is associated with faster disease progression than subtype A in spite of similar plasma HIV-1 loads. J. Infect. Dis. 195(8), 1177–1180 (2007)

    Article  Google Scholar 

  40. Pineda-Peña, A.-C., et al.: Automated subtyping of HIV-1 genetic sequences for clinical and surveillance purposes: performance evaluation of the new REGA version 3 and seven other tools. Infect. Genet. Evol. 19, 337–348 (2013)

    Article  Google Scholar 

  41. Libin, P., Versbraegen, N., Cuypers, L., Theys, K., Nowé, A.: An automated maximum likelihood method for classifying virus sequences (2016)

    Google Scholar 

  42. Brauer, F.: Compartmental models in epidemiology. Mathematical Epidemiology. LNM, vol. 1945, pp. 19–79. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78911-6_2

    Chapter  MATH  Google Scholar 

  43. Stacy, S., Black, A., Bedford, T.: Using the coalescent framework to detect missed infections in phylogenetic trees (2016)

    Google Scholar 

  44. Kingman, J.F.C.: The coalescent. Stochastic processes and their applications 13(3), 235–248 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  45. Diniz, A.: Portugal infeção VIH, SIDA e tuberculose em números, 2015. Portugal Infeção VIH, SIDA e Tuberculose em números, 2015, pp. 5–70 (2015)

    Google Scholar 

  46. Abecasis, A.B., et al.: HIV-1 subtype distribution and its demographic determinants in newly diagnosed patients in europe suggest highly compartmentalized epidemics. Retrovirology 10(1), 7 (2013)

    Article  Google Scholar 

  47. Libin, P., et al.: RegaDB: community-driven data management and analysis for infectious diseases. Bioinformatics 29(11), 1477–1480 (2013)

    Article  Google Scholar 

  48. Pineda-Peña, A.-C., et al.: Automated subtyping of HIV-1 genetic sequences for clinical andsurveillance purposes: performance evaluation of the new rega version 3 andseven other tools. Infection, Genetics Evol. 19, 337–348 (2013)

    Google Scholar 

  49. Carlos, L., et al.: A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences. Nucleic Acids Res. 37(suppl\_2), W634–W642 (2009)

    Google Scholar 

  50. Katoh, K., Misawa, K., Kuma, K., Miyata, T.: MAFFT: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res. 30(14), 3059–3066 (2002)

    Article  Google Scholar 

  51. Stamatakis, A.: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 1312–1313 (2014)

    Article  Google Scholar 

  52. Poon, A.F.Y.: Phylodynamic inference with kernel ABC and its application to HIV epidemiology. Mol. Biol. Evol. 32(9), 2483–2495 (2015)

    Article  Google Scholar 

  53. Libin, P., Hernalsteen, L., Theys, K., Gomes, P., Abecasis, A., Nowe, A.: Bayesian inference of set-point viral load transmission models. In: 30th Benelux Conference on Artificial Intelligence, pp. 107–121 (2018)

    Google Scholar 

  54. Poon, A.F.Y., Walker, L.W., Murray, H., McCloskey, R.M., Harrigan, P.R., Liang, R.H.: Mapping the shapes of phylogenetic trees from human and zoonotic RNA viruses. PLoS One 8(11), e78122 (2013)

    Article  Google Scholar 

  55. Rasmussen, D.A., Volz, E.M., Koelle, K.: Phylodynamic inference for structured epidemiological models. PLoS Comput. Biolo. 10(4), e1003570 (2014)

    Article  Google Scholar 

  56. Volz, E.M.: Complex population dynamics and the coalescent under neutrality. Genetics 190(1), 187–201 (2012)

    Article  Google Scholar 

  57. Volz, E.M.: Estimating HIV transmission rates with rcolgem (2014). Accessed Aug 2017

    Google Scholar 

  58. Volz, E.M.: Simulating genealogies with an epidemiological coalescent model using rcolgem (2015). Accessed Aug 2017

    Google Scholar 

  59. Ratmann, O., et al.: Phylogenetic tools for generalized HIV-1 epidemics: findings from the PANGEA-HIV methods comparison. Mol. Biol. Evol. 34(1), 185–203 (2017)

    Google Scholar 

  60. Libin, P., et al.: PhyloGeoTool: interactively exploring large phylogenies in an epidemiological context. Bioinformatics 33(24), 3993–3995 (2017)

    Article  Google Scholar 

  61. Stuessy, T.F., König, C.: Patrocladistic classification. Taxon 57(2), 594–601 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Pieter Libin was supported by a PhD grant of the FWO (Fonds Wetenschappelijk Onderzoek Vlaanderen) and a grant of the VUB research council (VUB/OZR2714).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pieter Libin or Nassim Versbraegen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Libin, P., Versbraegen, N., Abecasis, A.B., Gomes, P., Lenaerts, T., Nowé, A. (2020). Towards a Phylogenetic Measure to Quantify HIV Incidence. In: Bogaerts, B., et al. Artificial Intelligence and Machine Learning. BNAIC BENELEARN 2019 2019. Communications in Computer and Information Science, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-65154-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65154-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65153-4

  • Online ISBN: 978-3-030-65154-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics