Skip to main content

Evaluation of Alternative Exploration Schemes in the Automatic Modular Design of Robot Swarms

  • Conference paper
  • First Online:
Artificial Intelligence and Machine Learning (BNAIC 2019, BENELEARN 2019)

Abstract

The swarm robotics literature has shown that complex tasks can be solved by large groups of simple robots interacting with each other and their environment. Most of these tasks require the robots to explore their environment, making exploration a building block of the behaviors of robot swarms. However, exploration schemes have rarely been thoroughly evaluated, especially in the context of automatic design. This is the case with AutoMoDe, an automatic modular design approach that designs control software by assembling predefined mission-agnostic modules that embed fixed and arbitrarily selected exploration schemes. In this paper, we study the influence of different exploration schemes on the automatic design of robot swarms. To do so, we introduce AutoMoDe-Coconut, a new variant of AutoMoDe with multiple configurable exploration schemes embedded within its modules. We test Coconut both in bounded and unbounded workspaces and we compare the results with those of AutoMoDe-Chocolate in order to understand the impact of the new exploration schemes. The results show that Coconut is prone to select exploration schemes that fulfill the requirements of the mission in hand. However, Coconut does not perform better than Chocolate, even in situations where the only exploration schemes available to Chocolate are at an apparent disadvantage. We conjecture that the overall exploration capabilities of the swarm are not the mere reflection of individual-level exploration schemes but result from a more complex interaction between the atomic behaviors of the individuals.

GS and MK contributed equally to this work and should be considered as co-first authors. The software used in the experiments was implemented by GS and MK. The experiments were designed by DGR and performed by GS and MK. The paper was drafted by GS and MK and edited by MK and MB; all authors read and commented the final version. The research was directed by MB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Originally, this module was called exploration [14]. In this paper, we changed its denomination to avoid confusion with the notion of exploration scheme.

  2. 2.

    This protocol has been used in [13, 14, 18, 21, 22] and is further discussed in [3].

References

  1. Beni, G.: From swarm intelligence to swarm robotics. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 1–9. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_1

    Chapter  Google Scholar 

  2. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pp. 11–18. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  3. Birattari, M.: Notes on the estimation of the expected performance of automatic methods for the design of control software for robot swarms. Technical report TR/IRIDIA/2020-010, IRIDIA, Université Libre de Bruxelles, Belgium (2020)

    Google Scholar 

  4. Birattari, M., Ligot, A., et al.: Automatic off-line design of robot swarms: a manifesto. Front. Robot. AI 1(1), 1 (2019)

    Google Scholar 

  5. Bozhinoski, D., Birattari, M.: Designing control software for robot swarms: software engineering for the development of automatic design methods. In: Robotics Software Engineering RoSE, pp. 33–35. ACM, New York (2018)

    Google Scholar 

  6. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  7. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experiment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp. 185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7_16

    Chapter  Google Scholar 

  8. Doncieux, S., Bredeche, N., Mouret, J.B., Eiben, A.E.G.: Evolutionary robotics: what, why, and where to. Front. Robot. AI 2, 4 (2015)

    Article  Google Scholar 

  9. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463 (2014)

    Article  Google Scholar 

  10. Duarte, M., Oliveira, S., Christensen, A.: Evolution of hierarchical controllers for multirobot systems. In: Artificial Life Conference Proceedings 2014, pp. 657–664. MIT Press (2014)

    Google Scholar 

  11. Feynman, R.P., Leighton, R.B., Sands, M.L.: The Feynman Lectures on Physics Volume 1: Mainly Mechanics, Radiation, and Heat. Basic Books, New York (2011)

    MATH  Google Scholar 

  12. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and challenges. Front. Robot. AI 3(29), 1–9 (2016)

    Google Scholar 

  13. Francesca, G., et al.: AutoMoDe-Chocolate: automatic design of control software for robot swarms. Swarm Intell. 9(2/3), 125–152 (2015). https://doi.org/10.1007/s11721-015-0107-9

    Article  Google Scholar 

  14. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe: a novel approach to the automatic design of control software for robot swarms. Swarm Intell. 8(2), 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-4

    Article  Google Scholar 

  15. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software infrastructure for e-puck (and TAM). Technical report/IRIDIA/2015-004, IRIDIA, Université libre de Bruxelles, Belgium (2015)

    Google Scholar 

  16. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Magdalena, L.: Open e-puck range & bearing miniaturized board for local communication in swarm robotics. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 3111–3116. IEEE Press, Piscataway (2009)

    Google Scholar 

  17. Hasselmann, K., et al.: Reference models for Auto-MoDe. Technical report TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles, Belgium (2018)

    Google Scholar 

  18. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-based behaviors for robot swarms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 16–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_2

    Chapter  Google Scholar 

  19. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59496-5_337

    Chapter  Google Scholar 

  20. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for swarm mapping. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11650, pp. 211–222. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25332-5_19

    Chapter  Google Scholar 

  21. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control architecture in the automatic modular design of robot swarms. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 30–43. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_3

    Chapter  Google Scholar 

  22. Ligot, A., Birattari, M.: On mimicking the effects of the reality gap with simulation-only experiments. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 109–122. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7_9

    Chapter  Google Scholar 

  23. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.: The irace package: iterated racing for automatic algorithm configuration. Oper. Res. Perspect. 3, 43–58 (2016)

    MathSciNet  Google Scholar 

  24. Miglino, O., Lund, H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)

    Article  Google Scholar 

  25. Mondada, F., Bonani, M., Raemy, X., Pugh, J., et al.: The e-puck, a robot designed for education in engineering. In: Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de Castelo Branco, Portugal (2009)

    Google Scholar 

  26. Floreano, D., Mondada, F.: Hardware solutions for evolutionary robotics. In: Husbands, P., Meyer, J.-A. (eds.) EvoRobots 1998. LNCS, vol. 1468, pp. 137–151. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64957-3_69

    Chapter  Google Scholar 

  27. Pasternak, Z., Bartumeus, F., Grasso, F.W.: Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments. J. Phys. A Math. Theor. 42(43), 434010 (2009)

    Article  Google Scholar 

  28. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intell. 6(4), 271–295 (2012)

    Article  Google Scholar 

  29. Quinn, M., Smith, L., Mayley, G., Husbands, P.: Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors. Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. 361(1811), 2321–2343 (2003)

    Article  MathSciNet  Google Scholar 

  30. Ramachandran, R.K., Kakish, Z., Berman, S.: Information correlated Lévy walk exploration and distributed mapping using a swarm of robots. arXiv (2019)

    Google Scholar 

  31. Renshaw, E., Henderson, R.: The correlated random walk. J. Appl. Probab. 18(02), 403–414 (1981)

    Article  MathSciNet  Google Scholar 

  32. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W.M. (eds.) SR 2004. LNCS, vol. 3342, pp. 10–20. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30552-1_2

    Chapter  Google Scholar 

  33. Silva, F., Duarte, M., Correia, L., Oliveira, S., Christensen, A.: Open issues in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016)

    Article  Google Scholar 

  34. Spaey, G., Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Evaluation of alternative exploration schemes in the automatic modular design of robot swarms: Supplementary material (2020). http://iridia.ulb.ac.be/supp/IridiaSupp2020-002

  35. Trianni, V.: Evolutionary Swarm Robotics. SCI, vol. 108. Springer, Berlin, Germany (2008). https://doi.org/10.1007/978-3-540-77612-3

    Book  Google Scholar 

  36. Trianni, V., López-Ibáñez, M.: Advantages of task-specific multi-objective optimisation in evolutionary robotics. PloS One 10(8), e0140056 (2015)

    Article  Google Scholar 

  37. Watson, R., Ficici, S., Pollack, J.: Embodied evolution: distributing an evolutionary algorithm in a population of robots. Robot. Auton. Syst. 39(1), 1–18 (2002)

    Article  Google Scholar 

  38. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483–530 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681872). Mauro Birattari acknowledges support from the Belgian Fonds de la Recherche Scientifique – FNRS. David Garzón Ramos acknowledges support from the Colombian Administrative Department of Science, Technology and Innovation – COLCIENCIAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Birattari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spaey, G., Kegeleirs, M., Garzón Ramos, D., Birattari, M. (2020). Evaluation of Alternative Exploration Schemes in the Automatic Modular Design of Robot Swarms. In: Bogaerts, B., et al. Artificial Intelligence and Machine Learning. BNAIC BENELEARN 2019 2019. Communications in Computer and Information Science, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-65154-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65154-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65153-4

  • Online ISBN: 978-3-030-65154-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics