Skip to main content

The Role of Common Randomness in Information Theory and Cryptography: Secrecy Constraints

  • Chapter
  • First Online:
Identification and Other Probabilistic Models

Part of the book series: Foundations in Signal Processing, Communications and Networking ((SIGNAL,volume 16))

  • 566 Accesses

Abstract

The first multi-user model of communication subject to secrecy constraints was Wyner’s (1975, Bell Syst Techn J 54:1355–1387) “wiretap channel”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Ahlswede, Elimination of correlation in random codes for arbitrarily varying channels. Zeitschrift Wahrscheinlichkeitstheorie und verw. Geb. 33, 159–175 (1978)

    Article  MathSciNet  Google Scholar 

  2. R. Ahlswede, I. Csiszár, Common randomness in information theory and cryptography, Part I: Secret sharing. IEEE Trans. Inf. Theory 39, 1121–1132 (1993)

    MathSciNet  MATH  Google Scholar 

  3. R. Ahlswede, G. Dueck, Identification via channels. IEEE Trans. Inf. Theory 35, 15–29 (1989)

    Article  MathSciNet  Google Scholar 

  4. R. Ahlswede, G. Dueck, Identification in the presence of feedback – a discovery of new capacity formulas. IEEE Trans. Inf. Theory 35, 30–39 (1989)

    Article  MathSciNet  Google Scholar 

  5. I. Csiszár, J. Körner, Broadcast channels with confidential messages. IEEE Trans. Inf. Theory 24, 339–348 (1978)

    Article  MathSciNet  Google Scholar 

  6. I. Csiszár, J. K”orner, Information Theory: Coding Theorem for Discrete Memoryless Systems (Academic, New York, 1982)

    Google Scholar 

  7. I. Csiszár, P. Narayan, The capacity of the arbitrarily varying channel revisited: positivity, constraints. IEEE Trans. Inf. Theory 34, 181–193 (1988)

    Article  MathSciNet  Google Scholar 

  8. W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory IT–22, 644–654 (1976)

    Google Scholar 

  9. U.M. Maurer, Provably–secure key distribution based on independent channels. Presented at the 1990 IEEE Workshop on Information Theory, Eindhoven, 10–15 June

    Google Scholar 

  10. U.M. Maurer, Perfect cryptographic security from partially independent channels, in Proceedings of 23rd ACM Symposium on the Theory of Computing, New Orleans (1991), pp. 561–572

    Google Scholar 

  11. U.M. Maurer, Secret key agreement by public discussion based on common information. IEEE Trans. Inf. Theory 39(3), 733–742, (1993)

    Article  Google Scholar 

  12. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public–key cryptosystems. Commun. ACM 21, 120–126 (1978)

    Article  MathSciNet  Google Scholar 

  13. A.D. Wyner, The wire–tap channel. Bell Syst. Techn. J. 54, 1355–1387 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahlswede, R. (2021). The Role of Common Randomness in Information Theory and Cryptography: Secrecy Constraints. In: Ahlswede, A., Althöfer, I., Deppe, C., Tamm, U. (eds) Identification and Other Probabilistic Models. Foundations in Signal Processing, Communications and Networking, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-030-65072-8_14

Download citation

Publish with us

Policies and ethics