Skip to main content

C3-Based Petrochemicals: Recent Advances in Processes and Catalysts

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

The petrochemical and chemical industries are key enablers of modern societies. Transportation, construction, packaging, food processing, textile, water distribution, medical equipment, and in various other sectors petrochemicals and chemicals are used in making products for improving the quality of our modern living. Among the major five types of feedstocks (as listed below), light olefins are the most important chemical building blocks for the production of the various downstream petrochemicals.

  • Light olefins: ethylene and propylene

  • C4 hydrocarbons: Butanes, butenes, butadiene

  • Aromatics: Benzene, toluene, and xylenes (BTX)

  • Long-chain n-paraffin: Kerosene-derived C9-C17 paraffins

  • Syngas: a mixture of carbon monoxide and hydrogen

Ethylene and propylene are two major light olefins, used as key petrochemical building blocks. Ethylene is used in the production of polyethylene, ethylene chloride, ethylene oxide, etc. These products are used in the construction and packaging, plastic processing, and textile industries, to name just a few examples. Similarly, propylene, the simplest C3 olefin, is used in making a number of useful derivatives such as polypropylene, propylene oxide, acrylonitrile, acrylic acid, cumene, isopropanol, etc. The global propylene demand was around 100 MMTA (million metric tons per annum) in 2015 which is expected to increase at a 3.6% CAGR (compound annual growth rate) to more than 140 MMTA by 2025 due to wider applications of the propylene derivatives in the consumer market. For instance, polypropylene, a key derivative of propylene, is one of the best-selling plastics, extensively used in automobiles and in the manufacturing of packaging films. Acrylonitrile, another propylene derivative, is used in making acrylic fibers and coatings. Similarly, propylene oxide is used extensively for the manufacturing of polyurethanes and other chemicals, acrylic acid and oxo alcohols are employed in PVC plasticizers and coatings-based applications, cumene is used to make epoxy resins and polycarbonate, and isopropyl alcohol is used as solvent, and so on. Not only plastic processing, but also the packaging industry, the furnishing sector as well as the automotive industries are the major consumers of propylene derivatives.

Propylene is a highly activated synthetic molecule and thus it needs to be converted selectively to its derivatives for their cost-effective production. Both propylene production and its selective conversion processes for the production of other chemicals have gone through important improvement in recent times. Thus, it is being felt that it would be interesting to capture the most recent advances in the processes and catalysts associated with propylene production and subsequent conversion of propylene to important C3 chemicals to global readers. The main aim of this book chapter is to bring important aspects of various commercial processes and catalysts involved in the production of propylene and propylene-derived chemicals namely, propylene oxide, acrylonitrile, isopropanol, and acrylic acid. About two-thirds of global propylene is consumed to make polypropylene (PP), which is one of the most versatile plastic materials with good mechanical and chemical properties. However, information related to polypropylene production technologies and associated catalysts is beyond the scope of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-EHA:

2-Ethyl hexyl acrylate

3-HP:

3-Hydroxy propionic acid

ABS:

Acrylonitrile-butadiene styrene

ACN:

Acrylonitrile

atm. :

Atmospheres (unit for pressure)

CAGR:

Compound annual growth rate

CARENA:

Catalytic reactors based on new materials

Conv.:

Conversion

DCC:

Deep catalytic cracking

DIPE:

Diisopropyl ether

DME:

Dimethyl ether

DTP:

Dominant technology for propylene production

EBHP:

Ethylbenzene hydroperoxide process

ECH:

Epichlorohydrin

EPS :

Expanded polystyrene foam

FCC:

Fluid catalytic cracking

GTO:

Gas to oil

HPPO:

Hydrogen peroxide-to-propylene-oxide

IPA:

Isopropyl alcohol

LPG:

Liquefied petroleum gas

MMTPA:

Million metric ton per annum

MTO:

Methanol to olefin

MTP:

Methanol to propylene

OCP:

Olefin cracking process

OCT:

Olefin conversion technology

PDH:

Propane dehydrogenation

PEM:

Proton exchange membrane

PO:

Propylene oxide

POC:

Propylene oxide cumene only

R2P :

Residue to propylene

R2R:

Reactor-2-regenerators

RFCC:

Resid fluid catalytic cracking

SAN:

Styrene-acrylonitrile resin

SAP:

Super absorbent polymer

SOEC:

Solid oxide electrolyzer cell

T :

Temperature

t :

Time

TBHP:

Tertiary butyl hydroperoxide

TSC:

Thermal steam cracking

USY zeolite:

Ultra stable Y zeolite

wt%:

Weight percentage

References

  1. Chemicals prices, news and analysis, chemicals market intelligence (2011) http://www.icis.com/v2/chemicals/9076455/propylene/uses.html. Accessed 16 Aug 2011

  2. Corma A, Corresa E, Mathieu Y, Sauvanaud L, Al-Bogami S, Al-Ghrami MS, Bourane A (2017) Crude oil to chemicals: light olefins from crude oil. Cat Sci Technol 7:12–46

    Article  CAS  Google Scholar 

  3. Propylene Production and Manufacturing Process I. C. I. S (Independent Commodity Intelligence Services) (2007) https://www.icis.com/explore/resources/news/2007/11/06/9076456/propylene-production-and-manufacturing-process

  4. Bender M (2014) An overview of industrial processes for the production of olefins—C4 hydrocarbons. Chem Bio Eng Rev 1:136–147

    CAS  Google Scholar 

  5. Peter E, Richard K (2012) Propene. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  6. Jasper S, El-Halwagi MM (2015) A techno-economic comparison between two methanol-to-propylene processes. Processes 3:684–698

    Article  CAS  Google Scholar 

  7. Marcello DF (2017) New catalytic process for production of olefins, oil & gas portal. http://www.oil-gasportal.com/new-catalytic-process-for-production-of-olefins/?print=print

  8. Ante J (2013) Production of olefins—steam cracking of hydrocarbons, petroleum refining and petrochemical processes, natural gas composition, classification, processing. https://pdfs.semanticscholar.org/c70b/5a3ae45c4e1750ffdc3a7ec21ddbfa12a390.pdf?_ga=2.187285610.354597134.1582640836-121132309.1582640836

  9. Werner P (2011) Polyolefins. Applied plastics engineering handbook, processing and materials, plastic design library. Elsevier, Amsterdam, pp 23–48

    Google Scholar 

  10. Leon B (2011) Optimizing FCC operations in a high rare earth cost (market: part I). RefineryOperations.com, vol 2, pp 1–7

  11. Eren C, Nathan L, Theo JS, Jeremy W (2018) Petrochemicals 2030: reinventing the way to win in a changing industry. https://www.mckinsey.com/industries/chemicals/our-insights/petrochemicals-2030-reinventing-the-way-to-win-in-a-changing-industry

  12. Advance in Naphtha Steam Cracking (Process Economics Program Report, 248A) IHS Markit report. https://ihsmarkit.com/pdf/RP248A_toc_173653110917062932.pdf. Accessed Dec 2005

  13. Resid RFCC, Axens solutions. https://www.axens.net/product/process-licensing/10071/r2r.html

  14. Resid to propylene, axenes solutions, website: https://www.axens.net/product/process-licensing/20043/r2p-resid-to-propylene.html

  15. Knight J, Mehlberg R (2011) Maximize propylene from your FCC unit: innovative use of catalyst and operating conditions increases on-purpose olefin production: refining developments. Hydrocarb Process 90:91–95

    CAS  Google Scholar 

  16. Degnan TF, Hitnis GKC, Schipper PH (2000) History of ZSM-5 fluid catalytic cracking additive development at mobil. Microporous Mesoporous Mater 35:245–252

    Article  Google Scholar 

  17. Biswas J, Maxwell IE (1990) Recent process- and catalyst-related development in fluid catalytic cracking. Appl Catal 63:1–18

    Article  Google Scholar 

  18. Li Z, Shi W, Wang X, Jiang F (1994) Deep catalytic cracking process for light-olefins production. ACS Symp Ser 571:33–42

    Article  CAS  Google Scholar 

  19. Akah A, Al-Ghrami M (2015) Maximizing propylene production via FCC technology. Appl Petrochem Res 5:377–392

    Article  CAS  Google Scholar 

  20. Soni D, Rao MR, Saidulu G, Bhattacharyya D, Satheesh VK (2009) Catalytic cracking process enhances production of olefins. Petrol Technol Q Q4:95–100

    Google Scholar 

  21. Aitani A (2006) Propylene production, encyclopedia of chemical processing. Taylor & Francis, New York

    Google Scholar 

  22. Eng CN, Miller RB. Dual riser FCC reactor process with light and mixed light/heavy feeds. US Patent 7491315

    Google Scholar 

  23. Parthasarathi RS, Alabduljabbar SS (2014) HS-FCC high-severity fluidized catalytic cracking: a newcomer to the FCC family. Appl Petrochem Res 4:441–444

    Article  CAS  Google Scholar 

  24. Martin BH (2005) Handbook of chemical technology and pollution control, 3rd edn. Academic, New York

    Google Scholar 

  25. Henning G (2013) U.S. shale boom to boost LPG exports, bring down prices, Business News, Reuters. https://www.reuters.com/article/us-energy-lpg/u-s-shale-boom-to-boost-lpg-exports-bring-down-prices-idUSBRE9A30G820131104

  26. Nawaz Z (2015) Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev Chem Eng 31:1–24

    Article  CAS  Google Scholar 

  27. Caspary KJ, Gehrke H, Heinritz-Adrian M, Schwefer M (2008) In: Ertl G, Knozinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley-VHC Verlag GmbH, Weinheim, pp 3206–3229

    Google Scholar 

  28. The Uhde STAR process: oxydehydrogenation of light paraffins to olefins. http://www.thyssenkruppuhde.de/fileadmin/documents/brochures/uhde_brochures_pdf_en_12.df

  29. Sanfilippo D, Miracca I (2005) Oxidation and functionalization: classical and alternative routes and sources. In: Ernst S, Gallei E, Lercher JA, Rossini S, Santacesaria E (eds) Proceedings of the DGMK conference, German Society for Petroleum and Coal Science and Technology (DGMK), Hamburg

    Google Scholar 

  30. GS Engineering/Construction (ed) (2008) Propylene technology by PDH & Metathesis

    Google Scholar 

  31. Lummus-Technology-CB&I-Company (2009) Chicago. CATOFIN dehydrogenation, vol 31, pp 1–2

    Google Scholar 

  32. Hisham A, Maddah A (2018) Comparative study between propane dehydrogenation (PDH) technologies and plants in Saudi Arabia. Am Sci Res J Eng, Technol Sci 45:49–63

    Google Scholar 

  33. CATOFIN dehydrogenation (2013) http://www.com/images/uploads/tech_sheets/CatofinDehyrogenation-12.pdf. Accessed 23 Oct 2013

  34. New clariant CATOFIN propane dehydrogenation catalysts delivers significant savings (2013) http://newsroom.clariant.com/newclariant-catofin-propane-dehydrogenation-catalyst-delivers significant savings/. Accessed 23 Oct 2013

  35. INEOS selects site for €3-billion European petrochemical complex (2019) Oil Gas J. https://www.ogj.com/refiningprocessing/refining/capacities/article/17278908/ineos-selects-site-for-3billion-european-petrochemical-complex. Accessed 15 Jan 2019

  36. Michael M, Jeffrey W (2019) On-purpose propylene production. PTQ Q1: 1–5. https://www.digitalrefining.com/article/1002264,On_purpose_propylene_production.html#.XlVKs6Yh3IU

  37. Metathesis (2005) Kirk-Othmer encyclopedia of chemical technology, vol 20, 5th edn. Wiley, New York, pp 1–29

    Google Scholar 

  38. Mol JC (2004) Industrial application of olefin metathesis. Mol Catal A Chem 213:39–45

    Article  CAS  Google Scholar 

  39. Gartside RJ, Greene M. Catalyst and process for the metathesis of ethylene and butene to produce propylene. World Patent 2006052688

    Google Scholar 

  40. Gartside RJ, Greene MI, Kaleem H (2006) Maximize butene-1 yields. Hydrocarbon Process Int Ed 85(57–58):60–61

    Google Scholar 

  41. Gartside RJ, Greene MI, Quincy JJ. Process for producing propylene and hexene from C4 olefin streams. US Patent 6777582B2

    Google Scholar 

  42. Popoff N, Mazoyer E, Pelletier J, Gauvin RM, Taoufik M (2013) Expanding the scope of metathesis: a survey of polyfunctional, single-site supported tungsten systems for hydrocarbon valorization. Chem Soc Rev 42:9035–9054

    Article  CAS  Google Scholar 

  43. Banach M (2017) Take the profitable path to olefins using UOP technologies. In: Honeywell oil & gas technologies symposium, Cairo, Egypt

    Google Scholar 

  44. Gogate MR (2019) Methanol-to-olefins process technology: current status and future prospects. Petrol Sci Technol 37:559–565

    Article  CAS  Google Scholar 

  45. Koempel H, Liebner W (2007) Lurgi’s methanol to propylene (MTP) report on a successful commercialisation. In: Proceedings of the 8th natural gas conversion symposium, Natal, Brazil, 27–31 May 2007, pp 261–281

    Google Scholar 

  46. Koempel H, Liebner W, Wagner M (2005) Lurgi’s gas to chemicals (GTC): advanced technologies for natural gas monetization. In: Proceedings of the Gastech 2005, Bilbao, Spain, 14–17 March 2005

    Google Scholar 

  47. Hongxing L, Zaiku X, Guoliang Z (2013)The progress of SINOPEC methanol-to-olefins (S-MTO) technology. In: New technologies and alternative feedstocks in petrochemistry and refining, DGMK conference October 9-11 Dresden, Germany

    Google Scholar 

  48. S-MTO methanol to olefins technology (2018) Sinopec. http://oil.vcdcenter.com/wp-content/uploads/2018/12/SMTO.pdf. Accessed Dec 2018

  49. Liu Z, Ye M (2016) DMTO and beyond: DICP’s sustainable innovations in technologies for on-purpose production of light olefins from methanol. In: 16 AIChE, spring meeting, Houston, TX

    Google Scholar 

  50. Hurd D, Park S, Kan J (2014) FITT research: China’s coal-to-olefins industry. AG, Hong Kong: Deutsche Bank. Accessed 2 Jul 2014

    Google Scholar 

  51. Vora B, Marker TL, Nilsen HR (1998) Process for producing light olefins from crude methanol. US Patent 5714662

    Google Scholar 

  52. Funk GA, Myers D, Vora B (2004) A different game plan. Hydro Eng 12:25–28

    Google Scholar 

  53. Lurgi (2008) Methanol to propylene—MTP®. Lurgi AG, Frankfurt am Main, Germany. http://www.lurgi.com/website/fileadmin/user_upload/pdfs/19_Methan-Propylen-E_rev060707.pdf

  54. Olah GA, Goeppert A, Surya Prakash GK (2009) Beyond oil and gas: the methanol economy. Wiley-VCH, Weinheim. ISBN: 9783527324224

    Book  Google Scholar 

  55. Gogate MR (2019) Methanol-to-olefins process technology: current status and future prospects. Petrol Sci Technol 37:1–7. https://doi.org/10.1080/10916466.2018.1555589

    Article  CAS  Google Scholar 

  56. Okita A, Honda K (2012) Selective propylene production process using methanol/dimethylether and olefin as raw materials. Petrotech 35:581

    CAS  Google Scholar 

  57. Eng CN, Arnold EC, Vora B (1998) Integration of the UOP/HYDRO MTO process into ethylene plants. In: AIChE spring national meeting, session 16, fundamental topics in ethylene production, New Orleans, LA, USA, 8–12 March 1998; Paper 16g

    Google Scholar 

  58. Barger P (2002) Methanol to olefins (MTO) and beyond. Catal Sci Ser 3:239–260

    Article  CAS  Google Scholar 

  59. Koempel H, Liebner W (2007) Lurgi’s methanol to propylene (MTP). Report on a successful commercialization. In: Proceedings of the 8th natural gas conversion symposium, Natal, Brazil, 27–31 May 2007, pp 261–281

    Google Scholar 

  60. Farshi A, Shaiyegh F, Burogerdi SH, Dehgan A (2011) FCC process role in propylene demands. Petrol Sci Technol 29:875–885

    Article  CAS  Google Scholar 

  61. Zacharopoulou V, Lemonidou A (2017) Olefins from biomass intermediates: a review. Catalysts 8:2–19. https://doi.org/10.3390/catal8010002

    Article  CAS  Google Scholar 

  62. Manz TA, Yang B (2014) Selective oxidation passing through η3-ozone intermediates: applications to direct propene epoxidation using molecular oxygen oxidant. RSC Adv 4:27755–27774. https://doi.org/10.1039/c4ra03729d

    Article  CAS  Google Scholar 

  63. Kawabata T, Koike H, Yamamoto J, Yoshida S (2019) Trends and views in the development of technologies for propylene oxide production. Sumitomo Kagaku (English edition). Report 1, pp 1–9. https://www.sumitomo-chem.co.jp/english/rd/report/files/docs/2019E_1.pdf

  64. IHS markit (2015) Propylene oxide PEP consolidated report CR003

    Google Scholar 

  65. Shang S-Y, Mei L, Fu P (2016) Progress in producing technology of propylene oxide. Advanced materials, technology application. World Scientific, Singapore, pp 62–71. https://doi.org/10.1142/9789813200470_0008

    Book  Google Scholar 

  66. Goyal R, Singh O, Agrawal A, Samanta C, Sarkar B (2020): Advantages and limitations of catalytic oxidation with hydrogen peroxide: from bulk chemicals to lab scale process, Catalysis Reviews, https://doi.org/10.1080/01614940.2020.1796190

  67. Dittmeyer R, Keim W, Kreysa G, Oberholz A (eds) (2005) Winnacker-Küchler: Chemische Technik, 5th edn. Wiley-VCH, Weinheim

    Google Scholar 

  68. Japan External Trade Organization (2018) Chuugoku ni okeru Kankyou Kisei to Shijou Kibo no Saishin Doukou Chousa 2018-nen 1-gatsu. (Survey on Latest Trends in Environmental Regulations and Market Scale in China, January 2018). https://www5.jetro.go.jp/newsletter/shanghai/2018/180126/doukou.pdf

  69. Pell M, Korchak EI (1969) Epoxidation using ethylbenzene hydroperoxide with alkali or adsorbent treatment recycle ethylbenzene. US Patent 3439001

    Google Scholar 

  70. Dubner WS, Cochran RN (1993) Propylene oxide-styrene monomer process. US Patent 5210354

    Google Scholar 

  71. Van Der Sluis JJ (2003) Process for the preparation of styrene and propylene oxide. US Patent 6504038

    Google Scholar 

  72. Oyama ST (2011) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Amsterdam

    Google Scholar 

  73. Cavani F, Teles JH (2009) Sustainability in Catalytic Oxidation: An Alternative Approach or a Structural Evolution? ChemSusChem, 2 (6), 508–534. https://doi.org/10.1002/cssc.200900020

  74. Hibi T, Iwanaga K, Ito S, Koike H, Oku N (2009) Development of a new Acetophenone hydrogenation process for propylene oxide production. Sumitomo Kagaku, II, Osaka, pp 1–7

    Google Scholar 

  75. Ghanta M, Fahey DR, Busch DH, Subramaniam B (2013) Comparative economic and environmental assessments of H2O2-based and tertiary butyl hydroperoxide-based propylene oxide technologies. ACS Sust Chem Eng 1:268–277. https://doi.org/10.1021/sc300121j

    Article  CAS  Google Scholar 

  76. Kollar J (1967) Epoxidation process. US Patent 3351635

    Google Scholar 

  77. Marquis ET, Keating KP, Knifton JF, Smith WA, Sanderson JR, Lustri J (1990) Epoxidation of olefins in a polar medium. US Patent 4891437

    Google Scholar 

  78. Weissermel K, Arpe H-J (2004) Industrial organic chemistry, 5th ed, translated by T. Mukaiyama, Tokyo Kagaku Dozin, p 289

    Google Scholar 

  79. https://www.sumitomo-chem.co.jp/english/news/detail/20190819e.html

  80. https://www.sumitomo-chem.co.jp/english/rd/report/files/docs/20060100_ely.pdf

  81. Schmidt F, Bernhard M, Morell H, Pascaly M, Oggi C (2014) Chem Today 32:31–35

    CAS  Google Scholar 

  82. Russo V, Tesser R, Santacesaria E, Di Serio M (2013) Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process). Ind Eng Chem Res 52:1168–1178. https://doi.org/10.1021/ie3023862

    Article  CAS  Google Scholar 

  83. Lin M, Xia C, Zhu B, Li H, Shu X (2016) Green and efficient epoxidation of propylene with hydrogen peroxide (HPPO process) catalyzed by hollow TS-1 zeolite: a 1.0 kt/a pilot-scale study. Chem Eng J 295:370–375. https://doi.org/10.1016/j.cej.2016.02.072

    Article  CAS  Google Scholar 

  84. http://www.chemicals-technology.com/projects/basf-hppo/. Accessed Jan 2013

  85. http://www.knak.jp/big/evonik-hppo.htm. Accessed Jan 2013

  86. Grosch GH, Mller U, Walch A, Rieber N, Fischer M, Quaiser S, Harder W, Eller K, Bassler P, Wenzel A, Kaibel G, Stammer A, Henkelmann J, Battcher A, Teles JH, Schulz M, Treiber G (2003) Method for oxidizing an organic compound containing at least one C-C double bond. US Patent 6518441

    Google Scholar 

  87. Yap N, Andres RP, Delgass WN (2004) Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2. J Catal 226:156

    Article  CAS  Google Scholar 

  88. Nijhuis TA, Huizinga BJ, Makkee M, Moulijn JA (1999) Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports. Ind Eng Chem Res 38:884

    Article  CAS  Google Scholar 

  89. Zheng X, Zhang Q, Guo Y, Zhan W, Guo Y, Wang Y, Lu G (2012) Epoxidation of propylene by molecular oxygen over supported Ag−Cu bimetallic catalysts with low Ag loading. J Mol Catal A Chem 357:106–111

    Article  CAS  Google Scholar 

  90. Tatsumi T, Nakamura M, Yuasa K, Tominaga H (1991) Shape selectivity as a function of pore size in epoxidation of alkenes with supported titanium catalysts. Catal Lett 10:259–262

    Article  CAS  Google Scholar 

  91. Perego C, Carati A, Ingallina P, Mantegaza MA, Bellussi G (2001) Production of titanium containing molecular sieves and their application in catalysis. Appl Catal A Gen 221:63–72

    Article  CAS  Google Scholar 

  92. Short PL (2009) BASF, Dow Open. Novel propylene oxide plant. Chem Eng News 87:21

    Google Scholar 

  93. https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2010-greener-synthetic-pathways-award

  94. Khatib SJ, Oyama ST (2015) Direct oxidation of propylene to propylene oxide with molecular oxygen: a review. Catal Rev 57:306–344. https://doi.org/10.1080/01614940.2015.1041849

    Article  CAS  Google Scholar 

  95. Vaughan O, Kyriakou G, Macleod N, Tikhov M, Lambert R (2005) Copper as a selective catalyst for the epoxidation of propene. J Catal 236:401–404. https://doi.org/10.1016/j.jcat.2005.10.019

    Article  CAS  Google Scholar 

  96. Ghosh S, Acharyya SS, Tiwari R, Sarkar B, Singha RK, Pendem C, Bal R (2014) Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen. ACS Catal 4:2169–2174. https://doi.org/10.1021/cs5004454

    Article  CAS  Google Scholar 

  97. Kalavachev YK, Hayashi T, Tshbota S, Haruta M (1997) 3rd world congress on oxidation catalysis. Elsevier, Amsterdam

    Google Scholar 

  98. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153

    Article  CAS  Google Scholar 

  99. Nijhuis TA, Visser T, Weckhuysen BM (2005) Mechanistic study into the direct epoxidation of propene over gold/titania catalysts. J Phys Chem B 109:19309

    Article  CAS  Google Scholar 

  100. Nijhuis TA, Chen J, Kriescher SMA, Schouten JC (2010) The direct epoxidation of propene in the explosive regime in a microreactor: a study into the reaction kinetics. Ind Eng Chem Res 49:10479

    Article  CAS  Google Scholar 

  101. Chen J, Halin SJA, Schouten JC, Nijhuis TA (2011) Kinetic study of propylene epoxidation with H2 and O2 over Au/Ti−SiO2 in the explosive regime. Faraday Discuss 152:321

    Article  CAS  Google Scholar 

  102. Nexant markets and profitability (2018) Market analytics: acrylonitrile. https://www.nexanteca.com/reports/market-analytics-acrylonitrile-2018

  103. The SOHIO acrylonitrile process (2007) Americian Chemical Society. Accessed 14 Nov 2007

    Google Scholar 

  104. Grasselli RK (2011) In: Hess C, Schlögl R (eds) Ammoxidation of propylene and propane to acrylonitrile nanostructured catalysts: selective oxidations. Royal Society of Chemistry, London

    Google Scholar 

  105. Brazdil JF (2012) Acrylonitrile. Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken. https://doi.org/10.1002/14356007.a01_177.pub3

    Book  Google Scholar 

  106. Grasselli RK, Ferruccion T (2016) Acrylonitrile from biomass: still far from being a sustainable process. Top Catal 59:1651–1658

    Article  CAS  Google Scholar 

  107. Bastião DS (2019) Study of the eco-efficiency of acrylonitrile production processes. http://www.revistasg.uff.br/index.php/sg/article/view/1455/html_1

  108. Grasselli RK (2002) Fundamental principles of selective heterogeneous oxidation in catalysis. Top Catal 21:79–88

    Article  CAS  Google Scholar 

  109. Grasselli RK (1999) Advances and future trends in selective oxidation and ammoxidation catalysis. Catal Today 14:49

    Google Scholar 

  110. Callahan JL, Milberg EC (1966) Process for preparing olefinically, unsaturated nitriles. US Patent 3230246

    Google Scholar 

  111. Grasselli RK (1997) Handbook of heterogeneous catalysis. In: Ertl G, Knoezinger H, Weitkamp J (eds) 4.6.6. Ammoxidation. Wiley-VCH, Weinheim, p 2302

    Google Scholar 

  112. Grasselli RK (1983) In: Bonnelle JP, Delmon B, Derouane EG (eds) Surface properties and catalysis by non-metals. D. Riedel, Dordrecht, pp 273–289

    Chapter  Google Scholar 

  113. Kurt S, Wilhelm V, Joachim K, Rolf S, Gunter S. Process for preparing unsaturated nitriles. US Patent No. 3226422

    Google Scholar 

  114. Grasselli RK, Hardman HF (1972) Process for the manufacture of isoprene from isoamylenes and methyl butanols and catalyst therefore. US Patent 3642930

    Google Scholar 

  115. Grasselli RK, Miller AF, Hardman HF. Process for the manufacture of acrylonitrile and methacrylonitrile. US Patent 4503001

    Google Scholar 

  116. Grasselli RK, Suresh DD, Hardman HF. Production of unsaturated nitriles. US Patent 4139552

    Google Scholar 

  117. Suresh DD, Maria S, Michael F, Seely J. Catalyst for the manufacture of acrylonitrile and methacrylonitrile. US Patent 5212137

    Google Scholar 

  118. Caporali G, Ferlazzo N, Giordano N. Process for the continuous production of olefinically unsaturated nitriles. US Patent 3691224

    Google Scholar 

  119. Bart JCJ, Giordano N (1980) Structure and activity of tellurium-molybdenum oxide acrylonitrile catalysts. J Catal 64:356–370

    Article  CAS  Google Scholar 

  120. Bart JCJ, Giordano N (1984) Structure of the cerium-molybdenum-tellurium oxide acrylonitrile catalyst. Ind Eng Chem Prod Res Dev 23:56

    Article  CAS  Google Scholar 

  121. Grasselli RK, Callahan JL (1969) Structure-catalytic efficiency relationships in U Sb oxide acrylonitrile synthesis catalysts. J catal 14:93–103

    Article  CAS  Google Scholar 

  122. Grasselli RK, Suresh DD, Knox K (1970) Crystalline structures of USb3O10 and USbO5 in acrylonitrile catalysts. J Catal 18:356–358

    Article  CAS  Google Scholar 

  123. Grasselli RK, Suresh DD, Knox K (1972) Aspects of structure and activity in U Sb oxide acrylonitrile catalysts. J Catal 25:273–291

    Article  CAS  Google Scholar 

  124. Callahan J L, Berthold G. Mixed antimony oxide-uranium oxide oxidation catalyst. US Patent 3198750

    Google Scholar 

  125. Sasaki Y, Utsumi H, Miyaki K. Iron antimony-containing metal oxide catalyst composition and process for producing the same. Jap Patent 3142549

    Google Scholar 

  126. Sasaki Y, Nakamura T, Nakamura Y, Moriya K, Utsumi H, Saito S (1983) Process for production of acrylonitrile. US Patent 4370279

    Google Scholar 

  127. Krieger J (1996) Propane route to acrylonitrile holds promise of savings. Chem Eng News 74(39):18–19

    Article  Google Scholar 

  128. Ushikubo T, Oshima K, Kayou A, Hatano M (1997) Ammoxidation of propane over Mo-V-Nb-Te mixed oxide catalysts. Spillover and migration of surface species on catalysts. In: Proceedings of the 4th international conference on spillover, pp 473–480. https://doi.org/10.1016/s0167-2991(97)80871-3

  129. Hinago H, Komada S (2000) Ammoxidation catalyst for use in producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation. US Patent 6063728

    Google Scholar 

  130. Ushikubo T (2000) Recent topics of research and development of catalysis by niobium and tantalum oxides. Catal Today 57:331–338

    Article  CAS  Google Scholar 

  131. Adams RD, Elpitiya G, Khivantsev K, Blom D, Alexeev OS, Amiridis MD (2015) Ammoxidation of propane to acrylonitrile over silica-supported Fe-bi nanocatalyst. App Catal A: Gen 501:10–16

    Article  CAS  Google Scholar 

  132. Karp et al (2017) Science 358:1307–1310

    Article  CAS  Google Scholar 

  133. Nexant (2010) Acrylic acid, process evaluation/research planning (PERP) 08/09. www.chemsys.com

  134. IHS Markit report (2016) CEH Superabsorbent polymers report. https://ihsmarkit.com/Info/0319/acrylates-sap-client-webinar.html

  135. Grand view Research Inc (2017) grandviewresearchinc.weebly.com/blog/acrylic-acid-market-is-expected-to-show-a-momentous-role-in-demand-development

  136. Tullo AH (2013) Hunting for biobased acrylic acid. Chem Eng News 19:18–19

    Article  Google Scholar 

  137. Nova Institute for ecology and Innovation (2015) Bio-based building blocks and polymers in the world. http://www.bio-based.eu/market_study/media/files/15-05-13_Bio-based_Polymers_and_Building_Blocks_in_the_World-nova_Booklet.pdf

  138. World of Chemical (2014) BASF, Sinopec JV to build acrylic acid. SAP plant in Nanjing, China. https://www.chemicals-technology.com/projects/basf/

    Google Scholar 

  139. Nojiri N, Sakai Y, Watanabe Y (1995) Two catalytic technologies of much influence on progress in chemical process development in Japan. Catal Rev 37:145–178. https://doi.org/10.1080/01614949508007093

    Article  CAS  Google Scholar 

  140. Ohara T, Sato T, Shimizu N, Schwind GPH, Weiberg O, Marten K, Greim H (2003) Acrylic acid and derivatives. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim, pp 1–19

    Google Scholar 

  141. https://www.engineering-airliquide.com/acrylic-acid-lurgi-nippon-kayaku-technology

  142. Lin MM (2001) Selective oxidation of propane to acrylic acid with molecular oxygen. Appl Catal A Gen 207:1–16

    Article  CAS  Google Scholar 

  143. Callahan JL, Foreman B W (1960) Process for the oxidation of olefins. US Patent 2941007

    Google Scholar 

  144. Sennerwalt K, Gehrmann K, Vogt W, Schafer S (1960) Process for the manufacture of unsaturated aldehydes or ketones. US Patent 3171859

    Google Scholar 

  145. Takenaka S, Yamaguchi G (1969) Acrolein by propylene oxidation. JP 44006245

    Google Scholar 

  146. Takenaka S, Kido Y, Shimabara T, Ogawa M ( 1971) Catalysts for the oxidation of propylene to acrolein. DE 2038749

    Google Scholar 

  147. Nagai I, Yanagisawa I, Ninomiya M, Oohara T (1976) Oxidation of propylene. JP 51004113

    Google Scholar 

  148. Takata M, Aoki R, Sato T (1983) Catalyst for oxidation of propylene. DE 3300044

    Google Scholar 

  149. Shiraishi T, Kishiwada S, Shimizu S, Hommaru S, Atsumi A, Ichihashi H, Nagaoka Y (1973) JP Patent 4849710A

    Google Scholar 

  150. Koshikawa T (1974) Acrolein and acrylic acid from propylene. JP 49030308

    Google Scholar 

  151. Watanabe Y, Sugihara T, Takagi K, Imanari M, Nojiri N (1972) JP Patent 4741329B

    Google Scholar 

  152. Umemura Y, Oodan K, Suzuki K, Bandou Y, Hisayuki T. (1980) Acrolein. JP Patent 55157529

    Google Scholar 

  153. Izawa S, Ono I, Iikuni T (1965) JP Patent 411775B

    Google Scholar 

  154. Yanagida M , Kitahara M (1969) JP Patent 4426287B

    Google Scholar 

  155. Suzuki S, Itoh H, Inoue H (1970) JP Patent 4516090B

    Google Scholar 

  156. Takenaka S, Yamaguchi K (1969) JP Patent 4412129B

    Google Scholar 

  157. Ogawa M (1987) JP Patent 6234742B

    Google Scholar 

  158. Allen GC (1969) Oxidation of unsaturated aldehydes to the corresponding acids. US Patent 3644509

    Google Scholar 

  159. Krabetz R, Engelbach H (1970) Production of acrylic acid by oxidation of acrolein. US Patent 3845120

    Google Scholar 

  160. Wada M, Ninomiya M, Yanagisawa I, Ohara T (1978). JP Patent 536127B

    Google Scholar 

  161. Dolhyj SR, Milberger EC (1975) Ger Patent 2448804

    Google Scholar 

  162. Shiraishi T, Ichihashi H, Kikuzono Y, Nagaoka Y (1982) JP Patent 57298B

    Google Scholar 

  163. Kadowaki K, Koshikawa T (1974) JP Patent 44169B

    Google Scholar 

  164. Kurata N, Matsumoto T, Ohara T, Oda K (1967) JP Patent 42-9805B

    Google Scholar 

  165. Nagai I, Yanagisawa I, Ninomiya M, Ohara T (1983) JP Patent 5817172B

    Google Scholar 

  166. Takenaka S, Yamaguchi G (1970) JP Patent 454970A

    Google Scholar 

  167. Takayama Y, Nakayama Y, Asao S, Tokumichi Y, Mizukami S (1967) JP Patent 4212243

    Google Scholar 

  168. Kita T, Ishii H (1972) JP Patent 476606B

    Google Scholar 

  169. Croci M, Cavaterra E (1969) Process for the preparation of unsaturated acids. US Patent 3736355

    Google Scholar 

  170. Krabetz R, Engelbach H (1967) Production of acrylic acid. US Patent 3527797

    Google Scholar 

  171. Komuro I, Kadowaki K, Koshikawa T (1972) JP Patent 4722813B

    Google Scholar 

  172. Ukihashi H, Oda Y, Kojima G (1971) JP Patent 469134B

    Google Scholar 

  173. Ono I, Iikuni T, Mizoguchi J (1972). JP Patent 4714204B

    Google Scholar 

  174. Eden JS (1967, 1969) Catalytic process for preparing unsaturated acids and aldehydes. US Patent 3520923 (1967) and US Patent 3585152

    Google Scholar 

  175. Mizuno N, Tateishi M, Iwamoto M (1995) Pronounced catalytic activity of Fe0.08Cs2.5H1.26PVMo11O40 for direct oxidation of propane into acrylic acid. Appl Catal A Gen 128:L165–L170

    Article  CAS  Google Scholar 

  176. Luo L, Labinger J, Davis M (2000) Catalysis and surface science. In: Poster, 219th ACS meeting, March 2000. The catalyst was provided by BP Amoco

    Google Scholar 

  177. Velazco MR, McDonnell W, Smith AWJ (2017) Molybdenum/bismuth based mixed metal oxide catalysts for selective propylene oxidation and zeolite membrane protected palladium/ alumina catalysts for selective carbon monoxide oxidation and application in a process loop using a propane feed. Johnson Matthey Technol Rev 61:5–15

    Article  CAS  Google Scholar 

  178. Wang K, Vartuli JC, Mortier WJ, Dakka JM, Lemon RC, Mixed metal oxide catalysts and processes for their preparation and use. US Patent 7910772

    Google Scholar 

  179. Dieterle M, Heilek J, Mueller-Engel KJ. Method for the heterogeneously catalyzed partial direct oxidation of n-propane to acrylic acid. US Patent 7795470

    Google Scholar 

  180. Gaffney AM, Song R. Hydrothermally synthesized Mo-V-M-Nb-X oxide catalysts for the selective oxidation of hydrocarbons. US Patent 7718568

    Google Scholar 

  181. Hancock EG (1973) Propylene and its industrial derivatives. E. Benn, London

    Google Scholar 

  182. Persistent Market Search (2020) Isopropanol market: global industry analysis and forecast 2016–2026. https://www.persistencemarketresearch.com/market-research/isopropanol-market.asp

  183. IHS Markit (2018) Isopropyl alcohol (IPA); chemical economics handbook. https://ihsmarkit.com/products/isopropyl-alcohol-ipa-chemical-economics-handbook.html

  184. Xu Y, Chuang KT, Sanger AR (2002) Design of a process for production of isopropyl alcohol by hydration of propylene in a catalytic distillation column. J Trans IChemE 80(Part A):686–694

    Article  CAS  Google Scholar 

  185. Beroe Advantage Procurement (2018) Global market outlook on isopropanol. Isopropanol Market Intelligence. https://www.beroeinc.com/commodity/ipa-market/

  186. Kroschwitz JI (1991) Kirk–Othmer encyclopedia of chemical technology, vol 20, 4th edn. Wiley, New York, pp 216–240

    Google Scholar 

  187. Roy A (2018) The text book of industrial chemistry. Technology & Engineering (Lulu.com). ISBN-13: 978-0359095896

  188. Ester W (1970) Process for production of alcohols by catalytic hydration of olefins. GB Patent 1201181

    Google Scholar 

  189. Neier W, Woellner J (1972) Use cation catalyst for IPA. Hydrocarb Process 51:113–116

    CAS  Google Scholar 

  190. Onoue Y, Mitzutani Y, Akiyama S, Izumi Y (1978) Hydration with water. ChemTech 8:432–435

    CAS  Google Scholar 

  191. Izumi Y, Kawasaki Y, Tani M (1973) Process for the preparation of alcohols. US Patent 3758615

    Google Scholar 

  192. Lin YP (2012) Asian Chemical profile: isopropanol, ICIS (Independent Commodity Intelligence Service). https://www.icis.com/explore/resources/news/2012/12/16/9624355/asian-chemical-profile-isopropanol/

  193. Kosaka Y, Sinclair KB (1982) Bisphenol A: from phenol and acetone with an ion exchange resin catalyst, Union Carbide Technology, Process Economics Reviews, PEP’82-1. https://ihsmarkit.com/pdf/RW82-1-1_220283110917062932.pdf

  194. Mitsui Chemicals Inc (2011) New facilities to produce acetone-based isopropyl alcohol at Osaka works. https://jp.mitsuichemicals.com/en/release/2011/pdf/110829e.pdf

  195. Ovrebekk H (2008) Novapex to build 40,000 t/year France IPA plant, ICIS (Independent Commodity Intelligence Services) https://www.icis.com/explore/resources/news/2008/07/18/9141257/novapex-to-build-40-000-t-yr-france-ipa-plant/

  196. Hayes KS, Mitchell JW, Niak A, Turcotte MG. Hydrogenation of acetone. US Patent 7041857

    Google Scholar 

  197. Fukuhara H, Matsunaga F, Shibuta Y, Tachi T. Preparation of Isopropanol. US Patent 5081321

    Google Scholar 

  198. Rueter MA. Acetone hydrogenation using a supported ruthenium catalyst. US Patent 5495055

    Google Scholar 

  199. Pompetzki W, Schuler J, Maschmeyer D. Process for the hydrogenation of acetone. US Patent 6930213

    Google Scholar 

  200. Balouch A, Ali Umar A, Shah AA, Mat Salleh M, Oyama M (2013) Efficient heterogeneous catalytic hydrogenation of acetone to isopropanol on semihollow and porous palladium nanocatalyst. ACS Appl Mater Interfaces 5:9843–9849. https://doi.org/10.1021/am403087m

    Article  CAS  Google Scholar 

  201. Rahman A (2010) Catalytic hydrogenation of acetone to isopropanol: an environmental benign approach. Chem React Eng Catal 5:113–126

    CAS  Google Scholar 

  202. Li C, Sallee AM, Zhang X, Kumar S (2018) Electrochemical hydrogenation of acetone to produce isopropanol using a polymer electrolyte membrane reactor. Energies 11:2691

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanchal Samanta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samanta, C., Das, R.K. (2021). C3-Based Petrochemicals: Recent Advances in Processes and Catalysts. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_5

Download citation

Publish with us

Policies and ethics