Skip to main content

Emerging Trends in Solid Acid Catalyst Alkylation Processes

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

The development of green catalytic processes is receiving more focus during recent times due to ever-increasing environmental concerns. As a result of this, numerous attempts are being made to develop eco-friendly catalyst systems. This has resulted in the emergence of novel zeolite-based solid acid catalyst systems, which now offer a platform for the development of environmentally benign catalytic processes. Considering this aspect, the present chapter reviews evolution of zeolite-based catalytic system for (a) C4-alkylation to meet EURO/BS-VI gasoline RON specifications, (b) valorization of benzene through alkylation route, and (c) toluene alkylation for styrene production and brings out their current commercial practice and future outlook in industrial processes. Since these processes are mostly useful in industrial production of bulk chemical or monomers, the focus of the chapter lies in the development of novel catalytic systems in line with their evolvement of commercial/industrial processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile-butadiene-styrene plastic

atm:

Atmospheres (unit for pressure)

BF3:

Boron trifluoride

BS-VI:

Bharat Stage 6 fuel specifications

Bz:

Benzene

C:

Carbon/coke

CCR:

Continuous catalytic reforming

CH:

Cyclohexane

CHB:

Cyclohexylbenzene

CO:

Carbon monoxide

Conv.:

Conversion

DCHB:

Dicyclohexylbenzene

DMHs:

Dimethyl hexanes

EB:

Ethylbenzene

EPS:

Expanded polystyrene foam

GRM:

Gross refinery margin

H2SO4:

Sulfuric acid

HF:

Hydrofluoric acid

Ho:

Hammett acidity

IL:

Ionic liquid

LDH:

Layered double hydroxides

micro-meso zeolite:

Zeolites containing both micropores and mesopores

MS:

Motor spirit

MTBE:

Methyl tertiary-butyl ether

Nafion:

Sulfonated tetrafluoroethylene-based fluoropolymer copolymer

nB/nL:

Ratio of Brönsted to Lewis acid sites

–OH:

Hydroxyl

RON:

Research octane number

RVP:

Reid vapor pressure

SAN:

Styrene-acrylonitrile plastic

SAR:

Silica to alumina ratio

SbF5:

Antimony pentafluoride

SBR:

Styrene-butadiene rubber

Si/Al ratio:

Silicon to aluminum ratio

SM:

Styrene monomer

SMPO process:

Styrene monomer-propylene oxide process

T :

Temperature

t :

Time

TMPs:

Trimethyl pentanes

UoM:

Unit of measurement

USY zeolite:

Ultrastable Y zeolite

v/v:

Volume/volume

wt%:

Weight percentage

References

  1. Technical background on India BS VI fuel specifications by International Council on Clean Transportation

    Google Scholar 

  2. www.enggcyclopedia.com

  3. Hilman IM, Muraza O (2016) Conversion of Isobutylene to Octane-Booster Compounds after Methyl tert-Butyl Ether Phase out: The Role of Heterogeneous Catalysis. Ind Eng Chem Res 55: 11193–11210

    Google Scholar 

  4. Albright LF (2003) Alkylations Industrial, Encyclopedia of Catalysis; Edited by : Howath, I. T, John Wiley and Sons, New York, Vol. 1, pp 226-281

    Google Scholar 

  5. Pryor P (2001). In: Leawood KS (ed) Personal communication. Stratco, Leawood

    Google Scholar 

  6. http://www.refinerlink.com/blog/Liquid_Gold_Black_Box/

  7. Corma A, Martínez A (1993) Chemistry, catalysts, and processes for isoparaffin-olefin alkylation: actual situation and future trends. Catal Rev Sci Eng 35(4):483–570

    Article  CAS  Google Scholar 

  8. Boronat M, Viruela P, Corma A (1999) Theoretical study of bimolecular reactions between carbenium ions and paraffins: the proposal of a common intermediate for hydride transfer, disproportionation, dehydrogenation, and alkylation. J Phys Chem B 103(37):7809–7821

    Article  CAS  Google Scholar 

  9. Branzaru J (2001) Introduction to sulfuric acid alkylation unit process design. Stratco, Leawood

    Google Scholar 

  10. Hommeltoft SI (2001) Isobutane alkylation—Recent developments and future perspectives. Applied Catalysis A: General 221, 421–428

    Google Scholar 

  11. Albright LF (2003) Alkylation of isobutane with C3-C5 olefins to produce high-quality gasolines: physicochemical sequence of events. Ind Eng Chem Res 42(19):4283–4289

    Article  CAS  Google Scholar 

  12. Scott B (1992) Hydrocarbon Process 71:77

    CAS  Google Scholar 

  13. Hoffman HL (1991) Hydrocarbon Processing, 37

    Google Scholar 

  14. Singhal S, Agarwal S, Arora S, Singhal N, Kumar A (2017) Solid acids: potential catalysts for alkene–isoalkane alkylation. Catal Sci Technol 7:5810–5819

    Article  CAS  Google Scholar 

  15. Kranz K (2003) Alkylation chemistry: mechanisms, operating variables and olefin interactions. Stratco, Leawood

    Google Scholar 

  16. Hommeltoft SI, Ekelund O, Zavilla J (1997) Role of ester intermediates in isobutane alkylation and its consequence for the choice of catalyst system. Ind Eng Chem Res 36(9):3491–3497

    Article  CAS  Google Scholar 

  17. Corma A, Martínez A, Martínez C (1994) Isobutane/2-butene alkylation on ultrastable Y zeolites: influence of zeolite unit cell size. J Catal 146(1):185–192

    Article  CAS  Google Scholar 

  18. Corma A, Juan-Rajadell MI, López-Nieto JM, Martinez A, Martínez C (1994) A comparative study of \( {\mathrm{O}}_4^{2-} \)/ZrO2 and zeolite beta as catalysts for the isomerization of n-butane and the alkylation of isobutane with 2-butene. Appl Catal A Gen 111(2):175–189

    Google Scholar 

  19. Unverricht S, Ernst S, Weitkamp J (1994) In: Weitkamp J, Karge HG, Pfeifer H, Hölderich W (eds) Zeolites and related microporous materials: state of the art. Elsevier, Amsterdam, p 1693

    Google Scholar 

  20. Cardona F, Gnep NS, Guisnet M, Szabo G, Nascimento P (1995) Reactions involved in the alkylation of isobutane with 2-butene and with propene on a USHY zeolite. Appl Catal A Gen 128(2):243–257

    Article  CAS  Google Scholar 

  21. Chu YF, Chester AW (1986) Reactions of isobutane with butene over zeolite catalysts. Zeolites 6(3):195–200

    Article  CAS  Google Scholar 

  22. Corma A, Martínez A, Arroyo PA, Monteiro JLF, Sousa-Aguiar EF (1996) Isobutane/2-butene alkylation on zeolite beta: influence of post-synthesis treatments. Appl Catal A Gen 142(1):139–150

    Article  CAS  Google Scholar 

  23. Nivarthy GS, He Y, Seshan K, Lercher JA (1998) Elementary mechanistic steps and the influence of process variables in isobutane alkylation over H-BEA. J Catal 176(1):192–203

    Article  CAS  Google Scholar 

  24. Loenders R, Jacobs PA, Martens JA (1998) Alkylation of isobutane with 1-butene on zeolite beta. J Catal 176(2):545–551

    Article  CAS  Google Scholar 

  25. Mukhergee M, Nehlsen J (2007) Reduce alkylate costs with solid-acid catalysts. Hydrocarbon Process 86:110–114

    Google Scholar 

  26. Stöcker M, Mostad H, Rørvik T (1994) Isobutane/2-butene alkylation on faujasite-type zeolites (H EMT and H FAU). Catal Lett 28(2–4):203–209

    Article  Google Scholar 

  27. Feller A, Guzman A, Zuazo I, Lercher JA (2004) On the mechanism of catalyzed isobutane/butene alkylation by zeolites. J Catal 224(1):80–93

    Article  CAS  Google Scholar 

  28. Albright LF (2009) Present and future alkylation processes in refineries. Ind Eng Chem Res 48(3):1409–1413

    Article  CAS  Google Scholar 

  29. Weitkamp J, Jacobs PA (1993) “Isobutane/1-Butene Alkylation on Pentasil-Type Zeolite Catalysts” Studies in Surface Science and Catalysis; Volume 75; pp 1735-1738, New frontiers in catalysis. Edited by: Guczi L, Solymosi F, Tetenyi P, Proceedings of the 10th international congress on catalysis. Elsevier, Amsterdam,

    Google Scholar 

  30. Khadzhiev SN, Gerzeliev IM. In: Am. Chem. Soc., New York City Meeting, 25–30 August 1991, p 799

    Google Scholar 

  31. Gardos G, Redey A, Kovacs M, Kristof J (1983) Activity change of the H(NH4), LA-FAU, Y zeolite with the time in the alkylating reaction of isobutane. Hung J Ind Chem 11:403–407

    CAS  Google Scholar 

  32. Huss A Jr, Kirker GW, Keviller KM, Thomson RT (1991) Isoparaffin-olefin alkylation process. US Patent 4992615

    Google Scholar 

  33. Chu CT, Hussain A, Huss A Jr, Kresge CT, Roth WJ (1993) Isoparaffin-olefin alkylation process with zeolite MCM-36. US Patent 5258569

    Google Scholar 

  34. Huang TJ (1983) Heterogeneous isoparaffin/olefin alkylation. US Patent 4384161

    Google Scholar 

  35. Guo C, Liao S, Qian Z, Tanabe K (1994) Alkylation of isobutane with butenes over solid acid catalysts. Appl Catal A Gen 107(2):239–248

    Article  CAS  Google Scholar 

  36. Corma A, Gómez V, Martínez A (1994) Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables. Appl Catal A Gen 119(1):83–96

    Article  CAS  Google Scholar 

  37. Corma A, Martínez A, Martínez C (1994) Influence of process variables on the continuous alkylation of isobutane with 2-butene on superacid sulfated zirconia catalysts. J Catal 149:52–60

    Article  CAS  Google Scholar 

  38. Chellappa AS, Miller RC, Thomson WJ (2001) Supercritical alkylation and butene dimerization over sulfated zirconia and iron-manganese promoted sulfated zirconia catalysts. Appl Catal A Gen 209(1–2):359–374

    Article  CAS  Google Scholar 

  39. Krylov OV (2004) Heterogeneous catalysis. Akademkniga, Moscow

    Google Scholar 

  40. Sarsani VR, Wang Y, Subramaniam B (2005) Toward stable solid acid catalysts for 1-butene + isobutane alkylation: investigations of heteropolyacids in dense CO2 media. Ind Eng Chem Res 44(16):6491–6495

    Article  CAS  Google Scholar 

  41. Okuhara T, Yamashita M, Na K, Misono M (1994) Alkylation of isobutane with butenes catalyzed by a cesium hydrogen salt of 12-tungstophosphric acid. Chem Lett 23(8):1451–1454

    Article  Google Scholar 

  42. Essayem N, Kieger S, Coudurier G, Védrine JC (1996) Comparison of the reactivities of H3PW12O40 and H4SiW12O40 and their K+, NH4+ and Cs+ salts in liquid phase isobutane/butene alkylation. Stud Surf Sci Catal 101(A):591–600

    Article  CAS  Google Scholar 

  43. Gayraud PY, Stewart IH, Derouane-Abd Hamid SB, Essayem N, Derouane EG, Védrine JC (2000) Performance of potassium 12-tungstophosphoric salts as catalysts for isobutane/butene alkylation in subcritical and supercritical phases. Catal Today 63(2–4):223–228

    Article  CAS  Google Scholar 

  44. Blasco T, Corma A, Martínez A, Martínez-Escolano P (1998) Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: the benefit of using MCM-41 with larger pore diameters. J Catal 177(2):306–313

    Article  CAS  Google Scholar 

  45. Botella P, Corma A, López-Nieto JM (1999) The influence of textural and compositional characteristics of Nafion/silica composites on isobutane/2-butene alkylation. J Catal 185(2):371–377

    Article  CAS  Google Scholar 

  46. Lyon C, Subramaniam B, Pereira C (2001) Enhanced isooctane yields for 1-butene/isobutane alkylation on SiO2-supported Nafion® in supercritical carbon dioxide. Stud Surf Sci Catal 139:221–228

    Article  CAS  Google Scholar 

  47. Davis BH, Keogh RA, Srinivasan R (1994) Sulfated zirconia as a hydrocarbon conversion catalyst. Catal Today 20(2):219–256

    Article  CAS  Google Scholar 

  48. Song X, Sayari A (1996) Sulfated zirconia-based strong solid-acid catalysts: recent progress. Catal Rev Sci Eng 38:329–412

    Article  CAS  Google Scholar 

  49. Arata K (1996) Preparation of superacids by metal oxides for reactions of butanes and pentanes. Appl Catal A Gen 146(1):3–32

    Article  CAS  Google Scholar 

  50. Arata K, Matsuhashi H, Hino M, Nakamura H (2003) Synthesis of solid superacids and their activities for reactions of alkanes. Catal Today 81(1):17–30

    Article  CAS  Google Scholar 

  51. Satoh K, Matsuhashi H, Arata K (1999) Alkylation to form trimethylpentanes from isobutane and 1-butene catalyzed by solid superacids of sulfated metal oxides. Appl Catal A Gen 189(1):35–43

    Article  CAS  Google Scholar 

  52. Arata K, Hino M (1990) Solid catalyst treated with anion. XVIII. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Appl Catal 59(1):197–204

    Article  CAS  Google Scholar 

  53. Smirnova MY, Urguntsev GA, Ayupov AB, Vedyagin AA, Echevsky GV (2008) Isobutane/butene alkylation on sulfated alumina: influence of sulfation condition on textural, structural and catalytic properties. Appl Catal A Gen 344(1–2):107–113

    Article  CAS  Google Scholar 

  54. Ferreira ML, Rueda EH (2002) Theoretical characterization of alumina and sulfated-alumina catalysts for n-butene isomerization. J Mol Catal A Chem 178(1–2):147–160

    Article  CAS  Google Scholar 

  55. Yang J, Zhang M, Deng F, Luo Q, Yi D, Ye C (2003) Solid state NMR study of acid sites formed by adsorption of SO3 onto γ-Al2O3. Chem Commun 3(7):884–885

    Article  CAS  Google Scholar 

  56. Hino M, Kurashige M, Matsuhashi H, Arata K (2006) The surface structure of sulfated zirconia: studies of XPS and thermal analysis. Thermochim Acta 441(1):35–41

    Article  CAS  Google Scholar 

  57. Prakash GKS, Olah GA (1990) Acid-Case Catalysis, Proceedings of the international symposium on Acid base catalysis, p 59

    Google Scholar 

  58. Rajadhyaksha RA, Chaudhari DD (1988) Alkylation of phenol by C9 and C12 olefins. Bull Chem Soc Japan 61:1379–1381

    Article  CAS  Google Scholar 

  59. Olah GA, Kaspi J, Bukala J (1977) Heterogeneous catalysis by solid superacids. 3. Alkylation of benzene and transalkylation of alkylbenzenes over graphite-intercalated Lewis acid halide and perfluorinated resin-sulfonic acid (Nafion-H) catalysts. J Org Chem 42(26):4187–4191

    Article  CAS  Google Scholar 

  60. Hasegawa H, Higashimura T (1980) Selective alkylation of aromatic hydrocarbons with styrene by solid polymeric oxo acids. Polym J 12(6):407–409

    Article  CAS  Google Scholar 

  61. Harmer MA, Farneth WE, Sun Q (1998) Towards the sulfuric acid of solids. Adv Mater 10(15):1255–1257

    Article  CAS  Google Scholar 

  62. Arata K, Matsuhashi H (1990) Solid superacids. Adv Catal 37:165–211

    CAS  Google Scholar 

  63. Shen W, Dubé D, Kaliaguine S (2008) Alkylation of isobutane/1-butene over periodic mesoporous organosilica functionalized with perfluoroalkylsulfonic acid group. Catal Commun 10(3):291–294

    Article  CAS  Google Scholar 

  64. Heidekum A, Harmer MA, Hoelderich WF (1998) Highly selective Fries rearrangement over zeolites and Nafion in silica composite catalysts: a comparison. J Catal 176(1):260–263

    Article  CAS  Google Scholar 

  65. Shen W, Gu Y, Xu H, Dubé D, Kaliaguine S (2010) Alkylation of isobutane/1-butene on methyl-modified Nafion/SBA-15 materials. Appl Catal A Gen 377(1–2):1–8

    Article  CAS  Google Scholar 

  66. Misono M, Okuhara T (1993) Chemtech 23(11):23

    CAS  Google Scholar 

  67. Weitkamp J, Traa Y (1997), Handbook of heterogeneous catalysis. Edited by: Ertl G, Knözinger H, Weitkamp J, VCH, Weinheim, pp 2039–2069

    Google Scholar 

  68. Dalla Costa BO, Querini CA (2010) Isobutane alkylation with butenes in gas phase. Chem Eng J 162(2):829–835

    Article  CAS  Google Scholar 

  69. Yoo K, Burckle EC, Smirniotis PG (2001) Comparison of protonated zeolites with various dimensionalities for the liquid phase alkylation of i-butane with 2-butene. Catal Lett 74(1–2):85–90

    Article  CAS  Google Scholar 

  70. Corma A, Faraldos M, Mifsud A (1989) Influence of the level of dealumination on the selective adsorption of olefins and paraffins and its implication on hydrogen transfer reactions during catalytic cracking on USY zeolites. Appl Catal 47(1):125–133

    Article  CAS  Google Scholar 

  71. Corma A, Faraldos M, Martínez A, Mifsud A (1990) Hydrogen transfer on USY zeolites during gas oil cracking: influence of the adsorption characteristics of the zeolite catalysts. J Catal 122(2):230–239

    Article  CAS  Google Scholar 

  72. Zheng L, Xiaojin T, Lifeng H, Shuandi H (2016) Modeling of isobutane/butene alkylation using solid acid catalysts in a fixed bed reactor. China Pet Process Petrochem Technol 18(2):63–69

    Google Scholar 

  73. Klingmann R, Josl R, Traa Y, Gläser R, Weitkamp J (2005) Hydrogenative regeneration of a Pt/La-Y zeolite catalyst deactivated in the isobutane/n-butene alkylation. Appl Catal A Gen 281(1–2):215–223

    Article  CAS  Google Scholar 

  74. Feller A, Lercher JA (2004) Chemistry and technology of isobutane/alkene alkylation catalyzed by liquid and solid acids. Adv Catal 48:229–295

    CAS  Google Scholar 

  75. Kirsch FW, Potts JD, Barmby DS (1968) Prepr Am Chem Soc Div Pet Chem 13(1):153–164

    Google Scholar 

  76. Garwood WE, Venuto PB (1968) Paraffin-olefin alkylation over a crystalline aluminosilicate. J Catal 11(2):175–177

    Article  CAS  Google Scholar 

  77. Kirsch FW, Potts JD, Barmby DS (1972) Isoparaffin-olefin alkylations with crystalline aluminosilicates. I. Early studies-C4-olefins. J Catal 27(1):142–150

    Article  CAS  Google Scholar 

  78. Minachev KM, Mortikov ES, Zen’kovskii SM, Mostovoi NV, Kononov NF (1977) Prepr Am Chem Soc Div Pet Chem 22:1020–1024

    Google Scholar 

  79. Weitkamp J (1980). In: Rees LVC (ed) Proceedings of the 5th international on zeolite conference, Heyden, London, Philadelphia, Rheine, p 858

    Google Scholar 

  80. Juguin B, Raatz F, Marcilly C (1988) French Patent 2631956

    Google Scholar 

  81. Salgado H, CT&F, Cienc (2016) Tecnol Futuro 3(6):91–104

    Google Scholar 

  82. Flego C, Galasso L, Kiricsi I, Clerici MG (1994) In: Delmon B, Delmon B, Froment G (eds) Catalyst deactivation. Elsevier, Amsterdam, p 585

    Google Scholar 

  83. Flego C, Kiricsi I, Parker WO, Clerici MG (1995) Spectroscopic studies of LaHY-FAU catalyst deactivation in the alkylation of isobutane with 1-butene. Appl Catal A Gen 124(1):107–119

    Article  CAS  Google Scholar 

  84. Weitkamp J (1980) “Catalysis by zeolites”, Studies in Surface Science and Catalysis; Volume 5, p 65–75; In: Imelik B, Naccache C, Ben Taarit Y, Vedrine J.C, Coudurier G, Praliaud H (eds) Elsevier, Amsterdam

    Google Scholar 

  85. Corma A, Martinez A, Martinez C (1996) The role of extra framework aluminum species in USY catalysts during isobutane/2-butene alkylation. Appl Catal A Gen 134(1):169–182

    Article  CAS  Google Scholar 

  86. Simpson M, Wei J, Sundaresan S (1996) In: Anastas P, Williamson T (eds) ACS symposium series 626. American Chemical Society, p 105

    Google Scholar 

  87. Rørvik T, Mostad H, Ellestad OH, Stöcker M (1996) Isobutane/2-butene alkylation over faujasite type zeolites in a slurry reactor. Effect of operating conditions and catalyst regeneration. Appl Catal A Gen 137(2):235–253

    Article  Google Scholar 

  88. De Jong KP, Mesters CMAM, Peferoen DGR, Van Brugge PTM, De Groot C (1996) Paraffin alkylation using zeolite catalysts in a slurry reactor: chemical engineering principles to extend catalyst lifetime. Chem Eng Sci 51(10):2053–2060

    Article  Google Scholar 

  89. Sekine Y, Tajima Y, Ichikawa Y, Matsukata M, Kikucki E (2012) J Jpn Pet Inst 55(5):308–318

    Article  CAS  Google Scholar 

  90. Querini CA, Roa E (1997) Deactivation of solid acid catalysts during isobutane alkylation with C4 olefins. Appl Catal A Gen 163(1–2):199–215

    Article  CAS  Google Scholar 

  91. Zhuang Y, Ng FTT (2000) Isobutane/1-butene alkylation on LaNaY catalysts modified by alkali and alkaline-earth cations. Appl Catal A Gen 190(1–2):137–147

    Article  CAS  Google Scholar 

  92. Yoo KS, Smirniotis PG (2005) Zeolites-catalyzed alkylation of isobutane with 2-butene: influence of acidic properties. Catal Lett 103(3–4):249–255

    Article  CAS  Google Scholar 

  93. Pater J, Cardona F, Canaff C, Gnep NS, Szabo G, Guisnet M (1999) Alkylation of isobutane with 2-butene over a HFAU zeolite. Composition of coke and deactivating effect. Ind Eng Chem Res 38(10):3822–3829

    Article  CAS  Google Scholar 

  94. Ginosar DM, Thompson DN, Burch KC (2004) Recovery of alkylation activity in deactivated USY catalyst using supercritical fluids: a comparison of light hydrocarbons. Appl Catal A Gen 262(2):223–231

    Article  CAS  Google Scholar 

  95. Josl R, Klingmann R, Traa Y, Gläser R, Weitkamp J (2004) Regeneration of zeolite catalysts deactivated in isobutane/butene alkylation: an in situ FTIR investigation at elevated H2 pressure. Catal Commun 5(5):239–241

    Article  CAS  Google Scholar 

  96. Sievers C, Zuazo I, Guzman A, Olindo R, Syska H, Lercher JA (2007) Stages of aging and deactivation of zeolite LaX in isobutane/2-butene alkylation. J Catal 246(2):315–324

    Article  CAS  Google Scholar 

  97. Guzman A, Zuazo I, Feller A, Olindo R, Sievers C, Lercher JA (2006) Influence of the activation temperature on the physicochemical properties and catalytic activity of La-X zeolites for isobutane/cis-2-butene alkylation. Microporous Mesoporous Mater 97(1–3):49–57

    Article  CAS  Google Scholar 

  98. Sievers C, Liebert JS, Stratmann MM, Olindo R, Lercher JA (2008) Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation. Appl Catal A Gen 336(1–2):89–100

    Article  CAS  Google Scholar 

  99. Rørvik T, Dahl IM, Mostad HB, Ellestad OH (1995) Nafion-H as catalyst for isobutane/2-butene alkylation compared with a cerium exchanged Y zeolite. Catal Lett 33(1–2):127–134

    Article  Google Scholar 

  100. Rosenbach N, Mota CJA (2005) Isobutane/2-butene alkylation with zeolite Y without Brønsted acidity. J Braz Chem Soc 16(4):691–694

    Article  CAS  Google Scholar 

  101. Pine LA, Maher PJ, Wachter WA (1984) Prediction of cracking catalyst behavior by a zeolite unit cell size model. J Catal 85(2):466–476

    Article  CAS  Google Scholar 

  102. Lovink HJ, Pine LA (eds) (1990) The hydrocarbon chemistry of FCC Naphtha formation. Technip, Paris, p 1

    Google Scholar 

  103. Dwyer J, Karim K, Ojo AF (1991) Bimolecular hydrogen transfer over zeolites and SAPOs having the faujasite structure. J Chem Soc Faraday Trans 87(5):783–786

    Article  CAS  Google Scholar 

  104. Feller A, Guzman A, Zuazo I, Lercher JA (2003) A novel process for solid acid catalyzed isobutane/butene alkylation. Stud Surf Sci Catal. 145:67–72

    Article  CAS  Google Scholar 

  105. Yoo K, Smirniotis PG (2002) The influence of Si/Al ratios of synthesized beta zeolites for the alkylation of isobutane with 2-butene. Appl Catal A Gen 227(1–2):171–179

    Article  CAS  Google Scholar 

  106. Weitkamp J, Traa Y (1999) Isobutane/butene alkylation on solid catalysts. Where do we stand? Catal Today 49(1–3):193–199

    Article  CAS  Google Scholar 

  107. Freyhardt CC, Tsapatsis M, Lobo RF, Balkus KJ, Davis ME Jr (1996) A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature 381:295–298

    Article  CAS  Google Scholar 

  108. Davis ME, Saldarriaga C, Montes C, Garces J, Crowder C (1988) A molecular sieve with eighteen-membered rings. Nature 331:698–699

    Article  CAS  Google Scholar 

  109. Strohmaier KG, Vaughan DEW (2003) Structure of the first silicate molecular sieve with 18-ring pore openings, ECR-34. J Am Chem Soc 125:16035–16039

    Article  CAS  Google Scholar 

  110. Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1(6):879–890

    Article  CAS  Google Scholar 

  111. Verboekend D, Thomas K, Milina M, Mitchell S, Pérez-Ramírez J, Gilson JP (2011) Towards more efficient monodimensional zeolite catalysts: N-alkane hydro-isomerisation on hierarchical ZSM-22. Catal Sci Technol 1(8):1331–1335

    Article  CAS  Google Scholar 

  112. Chen LH, Li XY, Rooke JC, Zhang YH, Yang XY, Tang Y et al (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications. J Mater Chem 22(34):17381–17403

    Article  CAS  Google Scholar 

  113. de Jong KP, Zecevic J, Friedrich H, de Jongh PE, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F (2010) Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew Chem 122(52):10272–10276

    Article  Google Scholar 

  114. de Jong KP, Zecevic J, Friedrich H, de Jongh PE, Bulut M, van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F (2010) Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angew Chem Int Ed 49(52):10074–10078

    Article  CAS  Google Scholar 

  115. Rosalie Starling (2015) Hydrocarbon engineering energy global. https://www.energyglobal.com

  116. Van Broekhoven EH, Mas Cabre FR, Bogaard P, Klaver G, Vonhof M (1999) Process for alkylating hydrocarbons. US Patent 5986158

    Google Scholar 

  117. Buchold H, Dropsch H, Eberhardt J (2002) Proceedings of the world petroleum congress 2002, Rio de Janeiro

    Google Scholar 

  118. Shuang H, Lian-hai L (2006) Highly regioselective hydrogenation of biphenyl to phenylcyclohexane. In: The proceedings of the 3rd international conference on functional molecules

    Google Scholar 

  119. Chang CD, Cheng JC, Helton TE, Steckel MA, Stevenson SA (2000) Hydroalkylation of aromatic hydrocarbons. US Patent 6037513

    Google Scholar 

  120. Chen T, Cheng JC, Helton TE, Buchanan JS (2011) Process for the production cyclohexylbenzene. US Patent 7910779

    Google Scholar 

  121. Chen T, Cheng JC, Benitez FM, Helton TE, Stanat JE (2012) Process for the production cyclohexylbenzene. US Patent 8106243

    Google Scholar 

  122. Cheng J. C, Chen T, Ghosh P (2012) Process for production cyclohexylbenzene, US Patent 8178728

    Google Scholar 

  123. Jun Q, Komura K, Kubota Y, Sugi Y (2007) Synthesis of cyclohexylbenzene by hydroalkylation of benzene over Pd/Hβ binary catalyst. Chin J Catal 28:246–250

    Article  Google Scholar 

  124. Chen TJ, Benitez FM, Cheng JC, Stanat JE, Buchanan JS (2011) Process for the production of cyclohexylbenzene. US Patent 7906685

    Google Scholar 

  125. Corson BB, Ipatieff VN (1937) Influence of cyclohexene concentration in the alkylation of benzene by cyclohexene. Dealkylation of cyclohexylbenzenes. J Am Chem Soc 59(4):645–647

    Article  CAS  Google Scholar 

  126. Slaugh LH (1968) Hydrogenation of benzene to phenylcyclohexane with supported alkali metal catalysts. Tetrahedron 24:4523–4533

    Article  Google Scholar 

  127. Fahy J, Trimm DL, Cookson DJ (2001) Four component catalysis for the hydroalkylation of benzene to cyclohexyl benzene. Appl Catal A Gen 11:259–268

    Article  Google Scholar 

  128. Kumar SAK, John M, Pai SM, Ghosh S, Newalkar BL, Pant KK (2017) Selective hydroalkylation of benzene over palladium supported Y-zeolite: effect of metal acid balance. J Mol Catal 442:27–38

    Article  CAS  Google Scholar 

  129. Becker CL, Nair H, Lattner JR, Kuechler KH (2016) Process for producing cyclohexylbenzene. US Patent 9458067B2

    Google Scholar 

  130. Truffault R (1934) Bull Soc Chim 1:391

    CAS  Google Scholar 

  131. Louvar JJ, Francoy A (1970) Hydroalkylation of aromatic compounds. J Catal 16:62–68

    Article  CAS  Google Scholar 

  132. Slaugh LH, Leonard JA (1967) Phenylcyclohexane process. US Patent 3412165

    Google Scholar 

  133. Suggitt RM, Falls W, Crone JM Jr, Arkell A (1972) Hydroalkylation of mononuclear aromatic hydrocarbons. US Patent 3784617

    Google Scholar 

  134. Makkee M (1991) Reductive alkylation process. US Patent 5053571

    Google Scholar 

  135. Reed LE (1992) Hydroalkylation of aromatic hydrocarbons. US Patent 5146024

    Google Scholar 

  136. Yamazaki Y, Masuda A, Kawai T, Kimura S (1976) Hydroalkylation of benzene and methylbenzenes. Bull Jpn Petrol Inst 18:25–31

    Article  CAS  Google Scholar 

  137. Kralik M, Vallusova Z, Laluch J, Mikulec J, Macho V (2008) Comparison of ruthenium catalysts supported on beta and mordenite in the hydrocycloalkylation of benzene. Petrol Coal 50:44–51

    CAS  Google Scholar 

  138. Li Z, Fu X, Gao C, Huang J, Li B, Yang Y, Gao J, Shen Y, Peng Z, Yang J, Liu Z (2020) Enhancing the matching of acid/metal balance by engineering an extra Si-Al framework outside Pd/HBeta catalyst towards benzene hydroalkylation. Catal Sci Technol 10:1467–1476

    Article  Google Scholar 

  139. Borodina IB, Ponomareva OA, Yuschenko VV, Ivanova II (2009) Hydroalkylation of benzene and ethylbenzene over metal-containing zeolite catalysts. Petrol Chem 49:66–73

    Article  Google Scholar 

  140. Borodina IB, Ponomareva OA, Fajula F, Bousquet J, Ivanova II (2007) Hydroalkylation of benzene and ethylbenzene over metal containing zeolite catalysts. Microporous Mesoporous Mater 105:181–188

    Article  CAS  Google Scholar 

  141. Ivanova II, Borodina IB, Ponomareva OA, Yuschenko VV, Fajula F, Bousquet J (2007) Hydroalkylation of benzene and ethylbenzene over Ru- and Ni-containing zeolite catalysts—novel catalytic route for ethylcyclohexylbenzene synthesis. In: 40th international zeolite conference, pp 1228–1235

    Google Scholar 

  142. Anaya F, Zhang L, Tan Q, Resasco DE (2015) Tuning the acid–metal balance in Pd/ and Pt/zeolite catalysts for the hydroalkylation of m-cresol. J Catal 328:173–185

    Article  CAS  Google Scholar 

  143. Zhao C, Song W, Lercher JA (2012) Aqueous phase hydroalkylation and hydro-deoxygenation of phenol by dual functional catalysts comprised of Pd/C and H/La-BEA. ACS Catal 2:2714–2723

    Article  CAS  Google Scholar 

  144. Dakka JM, DeCaul LC, Xu T (2009) Process for making cyclohexylbenzene. US Patent 7579511

    Google Scholar 

  145. http://www.styreneforum.org

  146. Weissermel K, Arpe HJ (1997) Industrial organic chemistry. Third completely revised edition. VCH Verlagsgesellschaft mbH, Weinheim, pp 335–342

    Google Scholar 

  147. Lee EH (1973) Catal Rev 8:285

    Article  CAS  Google Scholar 

  148. Meima GR, Menon PG (2001) Catalyst deactivation phenomena in styrene production. Appl Catal A Gen 212:239

    Article  CAS  Google Scholar 

  149. Hesselink W (2001) Shell chemicals magazine, second quarter

    Google Scholar 

  150. Kuhrs C, Arita Y, Weiss W, Ranke W, Schlögl R (2001) Understanding heterogenous catalysis on an atomic scale: a combined surface science and reactivity investigation for the dehydrogenation of ethylbenzene over iron oxide catalysts. Top Catal 14:111

    Article  Google Scholar 

  151. James DH, Castor WM (2001) In: Ullmann’s encyclopedia of industrial chemistry, 6th ed (Electronic). Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  152. Lacroix C, Deluzarche A, Kinnemann A, Boyer A (1984) Promotion role of some metals (Cu, Ag) in the side chain alkylation of toluene by methanol. Zeolites 4:109

    Article  CAS  Google Scholar 

  153. Mimura N, Tuatara I, Saito M, Hattori T, Ohkuma K, Ando M (1998) Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide. Catal Today 45:61

    Article  CAS  Google Scholar 

  154. Lange JP, Mesters CMAM (2001) Mass transport limitations in zeolite catalysts: the dehydration of 1-phenyl-ethanol to styrene. Appl Catal A Gen 210:247–255

    Article  CAS  Google Scholar 

  155. Kieboom APG, Moulijn JA, Sheldon RA, Van Leeuwen PWMN (1999) Catalytic Processes in Industry, Studies in Surface Science and Catalysis 123: pp 29–80; Catalysis: An Integrated Approach; Van Santen RA, Van Leeuwen PWMN, Moulijn JA, Averill BA (eds), Elsevier, Amsterdam

    Google Scholar 

  156. Shreiber EH, Rhodes MD, Roberts GW (1999) Methanol dehydrogenation with Raney copper in a slurry reactor. Appl Catal B Environ 23(1):9–24

    Article  CAS  Google Scholar 

  157. Sidorenko YN, Galich PN, Gutyrya VS, Il’in VG, Neimark IE (1967) Condensation of toluene and methanol upon synthetic ceolites containing-exchange cations of alkali metals. Dokl Akad Nauk SSSR 173:132

    CAS  Google Scholar 

  158. Yashima T, Sato K, Hayasaka T, Hara N (1972) J Catal 26:303

    Article  CAS  Google Scholar 

  159. Wang X, Wang G, Shen D, Fu C, Wei M (1991) Zeolites 11:254

    Article  CAS  Google Scholar 

  160. Uniland ML, Baker GE (1981) In: Moser WR (ed) Catalysis in organic reactions. Marcel Dekker, New York

    Google Scholar 

  161. Guo WG, Zhang ZW, Liang J, Cai GY, Chen GQ (1991) In: Proceedings of the international conference on petroleum refinery and petrochemical process, vol 3, pp 1459–1465

    Google Scholar 

  162. Guo WG, Zhang ZW, Liang J, Cai GY, Chen GQ (1993) Chin Chem Lett 4:873

    CAS  Google Scholar 

  163. Das NK, Pramanik K (1997) Side-chain alkylation of toluene with methanol over single zeolite catalysts. J Indian Chem Soc 74:701–705

    CAS  Google Scholar 

  164. Das NK, Pramanik K (1997) Side-chain alkylation of toluene with methanol over dual catalysts comprising X-zeolites and Fe-Mo oxide. J Indian Chem Soc 74:705–708

    CAS  Google Scholar 

  165. Archier D, Coudurier G, Naccache C (1992) In: Von Ballmoos R, Higgins JB, Treacy MMJ (eds) Proceedings of the 9th international zeolite conference, Montreal, vol 2. Butterworth-Heinemann, Boston, pp 525–533

    Google Scholar 

  166. Wieland WS, Davis RJ, Garces JM (1996) Solid base catalysts for side-chain alkylation of toluene with methanol. Catal Today 28:443

    Article  CAS  Google Scholar 

  167. Wieland WS, Davis RJ, Garces JM (1998) J Catal 173:490

    Article  CAS  Google Scholar 

  168. Itoh H, Miyamoto A, Murakami Y (1980) J Catal 64:284

    Article  CAS  Google Scholar 

  169. Itoh H, Hattori T, Suzuki K, Miyamoto A, Mirakami Y (1981) J Catal 72:170

    Article  CAS  Google Scholar 

  170. Itoh H, Hattori T, Suzuki K, Mirakami Y (1983) Role of acid and base sites in the side-chain alkylation of alkylbenzenes with methanol on two-ion-exchanged zeolites. J Catal 79:21–33

    Article  CAS  Google Scholar 

  171. Hathaway PE, Davis ME (1989) J Catal 119:479

    Article  Google Scholar 

  172. Usachev NY, Lapidus AL, Usacheva ON, Savel’yev MM, Krasnova LL, Minachev KM (1993) Petrol Chem 33:291

    Google Scholar 

  173. Manivannan R, Pandurangan A (2009) Formation of ethyl benzene and styrene by side chain methylation of toluene over calcined LDHs. Appl Clay Sci 44:137–143

    Article  CAS  Google Scholar 

  174. Hattori H, Amusa AA, Jermy RB, Aitani AM, Al-khattaf SS (2016) Zinc oxide as efficient additive to cesium ion-exchanged zeolite X catalyst for side-chain alkylation of toluene with methanol. J Mol Catal A Chem 424:98–105

    Article  CAS  Google Scholar 

  175. Wang K, Chen JC, Helton TE (2012) Transalkylation of polycyclohexylbenzenes. US Patent Appl. No. 2012/0046499 A1

    Google Scholar 

  176. Garces JM, Stone FC, Bates SI, Curnutt JL, Scheldt FH (1988) Deactivation and regeneration of zeolite CsNaX catalyst used for the side chain alkylation of toluene with methanol. Stud Surf Sci Catal 37:505–511

    Article  CAS  Google Scholar 

  177. Li JH, Xiang H, Liu M, Wang QL, Zhu ZR, Hu ZH (2014) The deactivation mechanism of two typical shape-selective HZSM-5 catalysts for alkylation of toluene with methanol. Catal Sci Technol 4:2639–2649

    Article  CAS  Google Scholar 

  178. Korwar S, Burkholder M, Gilliland SE, Brinkley K, Gupton BF, Ellis KC (2017) Chelation-directed C–H activation/C–C bond forming reactions catalyzed by Pd(II) nanoparticles supported on multiwalled carbon nanotubes. Chem Commun 53:7022–7025

    Article  CAS  Google Scholar 

  179. Ritleng V, Sirlin C, Pfeffer M (2002) Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev 102:1731–1769

    Article  CAS  Google Scholar 

  180. Luo CZ, Gandeepan P, Cheng CH (2013) A convenient synthesis of quinolizinium salts through Rh(III) or Ru(II)-catalyzed C-H bond activation of 2-alkenylpyridines. Chem Commun 49:8528–8530

    Article  CAS  Google Scholar 

  181. van Broekhoven EH, Mas Cabre FR, Bogaard P, Klaver G, Vonhof M (1999) US Patent 5986158

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the management of Bharat Petroleum Corporation Limited for granting permission to publish the present chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat L. Newalkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pai, S.M., Das, R.K., Kumar, S.A.K., Kumar, L., Karemore, A.L., Newalkar, B.L. (2021). Emerging Trends in Solid Acid Catalyst Alkylation Processes. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_4

Download citation

Publish with us

Policies and ethics