Skip to main content

Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability
  • 1050 Accesses

Abstract

Global warming is attributed to CO2 emissions which are responsible for climate change. Various industries such as cement manufacturing plants, power plants, petrochemical industries, iron, and steel are the major contributors of CO2 emissions. Carbon capture and storage has been considered as an essential technology to reduce CO2 emissions into the atmosphere. Conventionally, amine-based solvents are used for the CO2 capture in the industry. These conventional processes suffer from numerous problems such as high vapor pressure, corrosion, degradation of the solvents, and requirement of high regeneration energy. Ionic liquids (ILs) are widely accepted as the solvents of next generation having capability to replace the amine solvents for the CO2 absorption. The non-volatility, superior thermal stability, non-corrosiveness, and low regeneration energy make them ideal for future perspective. However, ionic liquids have significantly lower CO2 solubility as compared to conventional solvents and requires complex purification step which adds to its cost. Deep eutectic solvents (DESs) are believed to be IL-analogues having similar property and have shown ability for CO2 absorption. The potential application of ionic liquids and deep eutectic solvents as alternatives to amine solvents has been discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2010) Energy technology perspectives scenarios & strategies to 2050. IEA, Paris

    Google Scholar 

  2. Core Writing Team, Pachauri RK, Reisinger A (2007) Climate Change 2007: An assessment of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  3. Mackay A (2008) Climate Change (2007) Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. J Environ Qual 37:2407–2407

    Article  CAS  Google Scholar 

  4. Washington W M (2010) Advancing the science of climate change. The National Academies Press, Washington, DC

    Google Scholar 

  5. Raynal L, Bouillon PA, Gomez A, Broutin P (2011) From MEA to demixing solvents and future steps, a roadmap for lowering the cost of post-combustion carbon capture. Chem Eng J 171:742–752

    Article  CAS  Google Scholar 

  6. Parry ML, Canziani OF, Palutik JP, Van der Linden PJ, Hanson C (2007) Climate change 2007: impacts, adaptation and vulnerability; contribution of working group II to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge

    Google Scholar 

  7. Aresta M, Dibenedetto A (2007) Utilisation of CO2 as a chemical feedstock: opportunities and challenges. J Chem Soc Dalton Trans:2975–2992

    Google Scholar 

  8. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R (2012) Post-combustion CO2 capture using solid sorbents: a review. Ind Eng Chem Res 51:1438–1463

    Article  CAS  Google Scholar 

  9. Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:458624–458632

    Article  CAS  Google Scholar 

  10. Pardemann R, Meyer B (2015) Pre-combustion carbon capture. In: Handbook of clean energy systems. John Wiley & Sons, New York, NY

    Google Scholar 

  11. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF (2005) Oxy-fuel combustion technology for coal-fired power generation. Prog Energy Combust Sci 31:283–307

    Article  CAS  Google Scholar 

  12. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann JM, Bouallou C (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62

    Article  CAS  Google Scholar 

  13. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624

    Article  CAS  Google Scholar 

  14. Mazari SA, Si Ali B, Jan BM, Saeed IM, Nizamuddin S (2015) An overview of solvent management and emissions of amine-based CO2 capture technology. Int J Greenh Gas Control 34:129–140

    Article  CAS  Google Scholar 

  15. Versteeg GF, van Swaaij WPM (1988) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions-I. Primary and secondary amines. Chem Eng Sci 43:573–585

    Article  CAS  Google Scholar 

  16. Crooks JE, Donnellan JP (1989) Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution. J Chem Soc Perkin Trans 2:331–333

    Article  Google Scholar 

  17. Versteeg GF, van Swaaij WPM (1988) On the kinetics between CO2 and alkanolamines both in aqueous and non-aqueous solutions-II. Tertiary amines. Chem Eng Sci 43:587–591

    Article  CAS  Google Scholar 

  18. Abu-Zahra MRM, Schneiders LHJ, Niederer JPM, Feron PHM, Versteeg GF (2007) CO2capture from power plants. Part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenh Gas Control 1:37–46

    Article  CAS  Google Scholar 

  19. Lu J, Wang L, Sun X, Li J, Liu X (2005) Absorption of CO2 into aqueous solutions of methyldiethanolamine and activated methyldiethanolamine from a gas mixture in a hollow fiber contactor. Ind Eng Chem Res 44:9230–9238

    Article  CAS  Google Scholar 

  20. McCann N, Maeder M, Attalla M (2008) Simulation of enthalpy and capacity of CO2 absorption by aqueous amine systems. Ind Eng Chem Res 47:2002–2009

    Article  CAS  Google Scholar 

  21. Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D (2006) Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Ind Eng Chem Res 45:2414–2420

    Article  CAS  Google Scholar 

  22. Sartori G, Savage DW (1983) Sterically hindered amines for CO2, removal from gases. Ind Eng Chem Fundam 22:239–249

    Article  CAS  Google Scholar 

  23. Bosch H, Versteeg GF, Van Swaaij WPM (1990) Kinetics of the reaction of CO2 with the sterically hindered amine 2-Amino-2-methylpropanol at 298 K. Chem Eng Sci 45:1167–1173

    Google Scholar 

  24. Haider HAM, Yusoff R, Aroua MK (2011) Equilibrium solubility of carbon dioxide in 2(methylamino)ethanol. Fluid Phase Equilib 303:162–167

    Article  CAS  Google Scholar 

  25. Hook RJ (1997) An investigation of some sterically hindered amines as potential carbon dioxide scrubbing compounds. Ind Eng Chem Res 36:1779–1790

    Article  CAS  Google Scholar 

  26. Conway W, Beyad Y, Feron P, Richner G, Puxty G (2014) CO2 absorption into aqueous amine blends containing benzylamine (BZA), monoethanolamine (MEA), and sterically hindered/tertiary amines. Energy Procedia 63:1835–1841

    Article  CAS  Google Scholar 

  27. Dubois L, Thomas D (2009) CO2 absorption into aqueous solutions of monoethanolamine, methyldiethanolamine, piperazine and their blends. Chem Eng Technol 32:710–718

    Article  CAS  Google Scholar 

  28. Hagewiesche DP, Ashour SS, Al-Ghawas HA, Sandall OC (1995) Absorption of carbon dioxide into aqueous blends of monoethanolamine and N-methyldiethanolamine. Chem Eng Sci 50:1071–1079

    Article  CAS  Google Scholar 

  29. Aroonwilas A, Veawab A (2004) Characterization and comparison of the CO2 absorption column. Ind Eng Chem Res 43:2228–2237

    Article  CAS  Google Scholar 

  30. Nwaoha C, Idem R, Supap T, Saiwan C, Tontiwachwuthikul P, Rongwong W, Al-Marri MJ, Benamor A (2017) Heat duty, heat of absorption, sensible heat and heat of vaporization of 2–Amino–2–Methyl–1–Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri–solvent blend for carbon dioxide capture. Chem Eng Sci 170:26–35

    Article  CAS  Google Scholar 

  31. Nwaoha C, Saiwan C, Tontiwachwuthikul P, Supap T, Rongwong W, Idem R, Al-Marri MJ, Benamor A (2016) Carbon dioxide capture: absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J Nat Gas Sci Eng 33:742–750

    Article  CAS  Google Scholar 

  32. Lv B, Guo B, Zhou Z, Jing G (2015) Mechanisms of CO2 capture into monoethanolamine solution with different CO2 loading during the absorption/desorption processes. Environ Sci Technol 49:10728–10735

    Article  CAS  Google Scholar 

  33. UNFCCC (United Nations Framework Convention on Climate, Change) (2015) The Paris agreement. Climate Focus summary; Briefing note on the Paris Agreement III. Climate Focus, Amsterdam

    Google Scholar 

  34. Anastas PT, Warner JC (1998) Green analytical chemistry. Oxford University Press, Oxford

    Google Scholar 

  35. Gu Y, Jérôme F (2013) Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem Soc Rev 42:9550–9570

    Article  CAS  Google Scholar 

  36. Wilkes JS (2002) A short history of ionic liquids - from molten salts to neoteric solvents. Green Chem 4:73–80

    Article  CAS  Google Scholar 

  37. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  38. Kokorin A (2012) Ionic liquids: applications and perspectives. InTech, Rijeka

    Google Scholar 

  39. Lei Z, Chen B, Koo YM, Macfarlane DR (2017) Introduction: ionic liquids. Chem Rev 117:6633–6635

    Article  CAS  Google Scholar 

  40. Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977

    Article  CAS  Google Scholar 

  41. Villanueva M, Coronas A, García J, Salgado J (2013) Thermal stability of ionic liquids for their application as new absorbents. Ind Eng Chem Res 52:15718–15727

    Article  CAS  Google Scholar 

  42. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AICHE J 47:2384–2389

    Article  CAS  Google Scholar 

  43. Singh VV, Nigam AK, Batra A, Boopathi M, Singh B, Vijayaraghavan R (2012) Applications of ionic liquids in electrochemical sensors and biosensors. Int J Electrochem 2012:1–19

    Google Scholar 

  44. Okoturo OO, VanderNoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181

    Article  CAS  Google Scholar 

  45. Zhao D, Liao Y, Zhang ZD (2007) Toxicity of ionic liquids. Clean Soil Air Water 35:42–48

    Article  CAS  Google Scholar 

  46. Pretti C, Chiappe C, Pieraccini D, Gregori M, Abramo F, Monni G, Intorre L (2006) Acute toxicity of ionic liquids to the zebrafish (Danio rerio). Green Chem 8:238–240

    Article  CAS  Google Scholar 

  47. Stolte S, Matzke M, Arning J, Böschen A, Pitner WR, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    Article  CAS  Google Scholar 

  48. Garcia MT, Gathergood N, Scammells PJ (2005) Biodegradable ionic liquids Part II. Effect of the anion and toxicology. Green Chem 7:9–14

    Article  CAS  Google Scholar 

  49. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273

    Article  CAS  Google Scholar 

  50. Blanchard LA, Hancu D (1999) Green processing using ionic liquids and CO2. Nature 399:28–29

    Article  Google Scholar 

  51. Blanchard LA, Gu Z, Brennecke JF (2001) High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B 105:2437–2444

    Article  CAS  Google Scholar 

  52. Zhang S, Yuan X, Chen Y, Zhang X (2005) Solubilities of CO2 in 1-butyl-3-methylimidazolium hexafluorophosphate and 1,1,3,3-tetramethylguanidium lactate at elevated pressures. J Chem Eng Data 50:1582–1585

    Article  CAS  Google Scholar 

  53. Karadas F, Atilhan M, Aparicio S (2010) Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuel 24:5817–5828

    Article  CAS  Google Scholar 

  54. Aki SNVK, Mellein BR, Saurer EM, Brennecke JF (2004) High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. J Phys Chem B 108:20355–20365

    Article  CAS  Google Scholar 

  55. Yokozeki A, Shiflett MB, Junk CP, Grieco LM, Foo T (2008) Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. J Phys Chem B 112:16654–16663

    Article  CAS  Google Scholar 

  56. Anthony JL, Maginn EJ, Brennecke JF (2002) Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B 106:7315–7320

    Article  CAS  Google Scholar 

  57. Kanakubo M, Umecky T, Hiejima Y, Aizawa T, Nanjo H, Kameda Y (2005) Solution structures of 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid saturated with CO2: experimental evidence of specific anion-CO2 interaction. J Phys Chem B 109:13847–13850

    Article  CAS  Google Scholar 

  58. Bara JE, Gabriel CJ, Carlisle TK, Camper DE, Finotello A, Gin DL, Noble RD (2009) Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem Eng J 147:43–50

    Article  CAS  Google Scholar 

  59. Muldoon MJ, Aki SNVK, Anderson JL, Dixon JK, Brennecke JF (2007) Improving carbon dioxide solubility in ionic liquids. J Phys Chem B 111:9001–9009

    Article  CAS  Google Scholar 

  60. Aparicio S, Atilhan M (2010) Computational study of hexamethylguanidinium lactate ionic liquid: a candidate for natural gas sweetening. Energy Fuel 24:4989–5001

    Article  CAS  Google Scholar 

  61. Yuan X, Zhang S, Liu J, Lu X (2007) Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures. Fluid Phase Equilib 257:195–200

    Article  CAS  Google Scholar 

  62. Palgunadi J, Kang JE, Nguyen DQ, Kim JH, Min BK, Lee SD, Kim H, Kim HS (2009) Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids. Thermochim Acta 494:94–98

    Article  CAS  Google Scholar 

  63. Revelli AL, Mutelet F, Jaubert JN (2010) High carbon dioxide solubilities in imidazolium-based ionic liquids and in poly(ethylene glycol) dimethyl ether. J Phys Chem B 114:12908–12913

    Article  CAS  Google Scholar 

  64. Kurnia KA, Harris F, Wilfred CD, Abdul Mutalib MI, Murugesan T (2009) Thermodynamic properties of CO2 absorption in hydroxyl ammonium ionic liquids at pressures of (100-1600) kPa. J Chem Thermodyn 41:1069–1073

    Article  CAS  Google Scholar 

  65. Camper D, Scovazzo P, Koval C, Noble R (2004) Gas solubilities in room-temperature ionic liquids. Ind Eng Chem Res 43:3049–3054

    Article  CAS  Google Scholar 

  66. Akanksha, Pant KK, Srivastava VK (2008) Mass transport correlation for CO2 absorption in aqueous monoethanolamine in a continuous film contactor. Chem Eng Process Process Intensif 47:920–928

    Article  CAS  Google Scholar 

  67. Bates ED, Mayton RD, Ntai I, Davis JH Jr, Tong KH, Wong KY, Chan TH (2002) CO2 capture by a task specific ionic liquid. J Am Chem Soc 124:3423–3425

    Article  CAS  Google Scholar 

  68. Gurkan BE, De Fuente JC, Mindrup EM, Ficke LE, Goodrich BF, Price EA, Schneider WF, Brennecke JF (2010) Equimolar CO2 absorption by anion-functionalized ionic liquids. J Am Chem Soc 132:2116–2117

    Article  CAS  Google Scholar 

  69. Goodrich BF, De La Fuente JC, Gurkan BE, Zadigian DJ, Price EA, Huang Y, Brennecke JF (2011) Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind Eng Chem Res 50:111–118

    Article  CAS  Google Scholar 

  70. Gutowski KE, Maginn EJ (2008) Amine-functionalized task-specific ionic liquids: a mechanistic explanation for the dramatic increase in viscosity upon complexation with CO2 from molecular simulation. J Am Chem Soc 130:14690–14704

    Article  CAS  Google Scholar 

  71. McDonald JL, Sykora RE, Hixon P, Mirjafari A, Davis JH (2014) Impact of water on CO2 capture by amino acid ionic liquids. Environ Chem Lett 12:201–208

    Article  CAS  Google Scholar 

  72. Goodrich BF, De Fuente JC, Gurkan BE, Lopez ZK, Price EA, Huang Y, Brennecke JF (2011) Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J Phys Chem B 115:9140–9150

    Article  CAS  Google Scholar 

  73. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang XP (2009) Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chemistry 15:3003–3011

    Article  CAS  Google Scholar 

  74. Cserjési P, Nemestóthy N, Bélafi-Bakó K (2010) Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J Membr Sci 349:6–11

    Article  CAS  Google Scholar 

  75. Scovazzo P, Kieft J, Finan DA, Koval C, DuBois D, Noble R (2004) Gas separations using non-hexafluorophosphate [PF6]- anion supported ionic liquid membranes. J Membr Sci 238:57–63

    Article  CAS  Google Scholar 

  76. Neves LA, Crespo JG, Coelhoso IM (2010) Gas permeation studies in supported ionic liquid membranes. J Membr Sci 357:160–170

    Article  CAS  Google Scholar 

  77. Gonzalez-Miquel M, Palomar J, Omar S, Rodriguez F (2011) CO2/N2 selectivity prediction in supported ionic liquid membranes (SILMs) by COSMO-RS. Ind Eng Chem Res 50:5739–5748

    Article  CAS  Google Scholar 

  78. Tang J, Tang H, Sun W, Plancher H, Radosz M, Shen Y (2005) Poly(ionic liquid)s: a new material with enhanced and fast CO2 absorption. Chem Commun:3325–3327

    Google Scholar 

  79. Tang J, Sun W, Tang H, Radosz M, Shen Y (2005) Enhanced CO2 absorption of poly(ionic liquid)s. Macromolecules 38:2037–2039

    Article  CAS  Google Scholar 

  80. Hu X, Tang J, Blasig A, Shen Y, Radosz M (2006) CO2 permeability, diffusivity and solubility in polyethylene glycol-grafted polyionic membranes and their CO2 selectivity relative to methane and nitrogen. J Membr Sci 281:130–138

    Article  CAS  Google Scholar 

  81. Blasig A, Tang J, Hu X, Tan SP, Youqing Shen A, Radosz M (2007) Carbon dioxide solubility in polymerized ionic liquids containing ammonium and imidazolium cations from magnetic suspension balance: P[VBTMA][BF4] and P[VBMI][BF4]. Ind Eng Chem Res 46:5542–5547

    Article  CAS  Google Scholar 

  82. Zhao Z, Dong H, Zhang X (2012) The research progress of CO2 capture with ionic liquids. Chin J Chem Eng 20:120–129

    Article  CAS  Google Scholar 

  83. Wang C, Luo X, Luo H, Jiang D, Li H, Dai S (2011) Tuning the basicity of ionic liquids for equimolar CO2 capture. Angew Chem Int Ed 50:4918–4922

    Article  CAS  Google Scholar 

  84. Ventura SPM, Pauly J, Daridon JL, Lopes da Silva JA, Marrucho IM, Dias AMA, Coutinho JAP (2008) High pressure solubility data of carbon dioxide in (tri-iso-butyl(methyl)phosphonium tosylate + water) systems. J Chem Thermodyn 40:1187–1192

    Article  CAS  Google Scholar 

  85. Wappel D, Gronald G, Kalb R, Draxler J (2010) Ionic liquids for post-combustion CO2 absorption. Int J Greenh Gas Control 4:486–494

    Article  CAS  Google Scholar 

  86. Camper D, Bara JE, Gin DL, Noble RD (2008) RTIL–Amine solutions tunable solvents for efficient and reversible capture of CO2. Ind Eng Chem Res 47:8496–8498

    Article  CAS  Google Scholar 

  87. Feng Z, Cheng-Gang F, You-Ting W, Yuan-Tao W, Ai-Min L, Zhi-Bing Z (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem Eng J 160:691–697

    Article  CAS  Google Scholar 

  88. Zhao Y, Zhang X, Zeng S, Zhou Q, Dong H, Tian X, Zhang S (2010) Density, viscosity, and performances of carbon dioxide capture in 16 absorbents of amine + ionic liquid + H2O, ionic liquid + H2O, and Amine + H2O systems. J Chem Eng Data 55:3513–3519

    Article  CAS  Google Scholar 

  89. Baj S, Siewniak A, Chrobok A, Krawczyk T, Sobolewski A (2013) Monoethanolamine and ionic liquid aqueous solutions as effective systems for CO2 capture. J Chem Technol Biotechnol 88:1220–1227

    Article  CAS  Google Scholar 

  90. Taib MM, Murugesan T (2012) Solubilities of CO2 in aqueous solutions of ionic liquids (ILs) and monoethanolamine (MEA) at pressures from 100 to 1600kPa. Chem Eng J 181–182:56–62

    Article  CAS  Google Scholar 

  91. Huang Y, Zhang X, Zhang X, Dong H, Zhang S (2014) Thermodynamic modeling and assessment of ionic liquid-based CO2 capture processes. Ind Eng Chem Res 53:11805–11817

    Article  CAS  Google Scholar 

  92. Yang J, Yu X, Yan J, Tu ST (2014) CO2 capture using amine solution mixed with ionic liquid. Ind Eng Chem Res 53:2790–2799

    Article  CAS  Google Scholar 

  93. Haider MB, Hussain Z, Kumar R (2016) CO2 absorption and kinetic study in ionic liquid amine blends. J Mol Liq 224:1025–1031

    Article  CAS  Google Scholar 

  94. Conway W, Bruggink S, Beyad Y, Luo W, Melián-Cabrera I, Puxty G, Feron P (2015) CO2 absorption into aqueous amine blended solutions containing monoethanolamine (MEA), N,N-dimethylethanolamine (DMEA), N,N-diethylethanolamine (DEEA) and 2-amino-2-methyl-1-propanol (AMP) for post-combustion capture processes. Chem Eng Sci 126:446–454

    Article  CAS  Google Scholar 

  95. Maase M, Massonne K (2005) Biphasic acid scavenging utilizing ionic liquids: the first commercial process with ionic liquids. ACS Symp Ser 902:126–132

    Article  CAS  Google Scholar 

  96. Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60

    Article  CAS  Google Scholar 

  97. Rodríguez NR, González ASB, Tijssen PMA, Kroon MC (2015) Low transition temperature mixtures (LTTMs) as novel entrainers in extractive distillation. Fluid Phase Equilib 385:72–78

    Article  CAS  Google Scholar 

  98. Petkovic M, Seddon KR, Rebelo LPN, Pereira CS (2011) Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev 40:1383–1403

    Article  CAS  Google Scholar 

  99. Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798

    Article  CAS  Google Scholar 

  100. Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ (2004) Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc 126:5300–5308

    Article  CAS  Google Scholar 

  101. Kim YS, Choi WY, Jang JH, Yoo KP, Lee CS (2005) Solubility measurement and prediction of carbon dioxide in ionic liquids. Fluid Phase Equilib 228–229:439–445

    Article  CAS  Google Scholar 

  102. Shariati A, Peters CJ (2004) High-pressure phase behavior of systems with ionic liquids: Part III. The binary system carbon dioxide + 1-hexyl-3-methylimidazolium hexafluorophosphate. J Supercrit Fluids 30:139–144

    Article  CAS  Google Scholar 

  103. Shen KP, Li MH (1992) Solubility of carbon dioxide in aqueous mixtures of monoethanolamine with methyldiethanolamine. J Chem Eng Data 37:96–100

    Article  CAS  Google Scholar 

  104. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids. J Am Chem Soc 126:9142

    Article  CAS  Google Scholar 

  105. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun:70–71

    Google Scholar 

  106. Francisco M, Van Den Bruinhorst A, Kroon MC (2013) Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085

    Article  CAS  Google Scholar 

  107. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  Google Scholar 

  108. Tang B, Row KH (2013) Recent developments in deep eutectic solvents in chemical sciences. Monatshefte Fur Chemie 144:1427–1454

    Article  CAS  Google Scholar 

  109. Paiva A, Craveiro R, Aroso I, Martins M, Reis RL, Duarte ARC (2014) Natural deep eutectic solvents - solvents for the 21st century. ACS Sustain Chem Eng 2:1063–1071

    Article  CAS  Google Scholar 

  110. Abo-hamad A, Hayyan M, Abdulhakim M, Ali M, Cui X, Zhang S, Shi F, Zhang Q, Ma X, Lu L, Deng Y, Earle MJ, Seddon KR, Medycznego U, Maria A, Cieczy ZAS, Nowych JO, Zlotin SG, Makhova NN (2010) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567

    Article  CAS  Google Scholar 

  111. Liu P, Hao J-W, Mo L-P, Zhang Z-H (2015) Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv 5:48675–48704

    Article  CAS  Google Scholar 

  112. Garcia G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuel 29:2616–2644

    Article  CAS  Google Scholar 

  113. Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  Google Scholar 

  114. Chandran D, Khalid M, Walvekar R, Mubarak NM, Dharaskar S, Wong WY, Gupta TCSM (2019) Deep eutectic solvents for extraction-desulphurization: a review. J Mol Liq 275:312–322

    Article  CAS  Google Scholar 

  115. Tang B, Zhang H, Row KH (2015) Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J Sep Sci 38:1053–1064

    Article  CAS  Google Scholar 

  116. Troter DZ, Todorović ZB, Dokić-Stojanović DR, Stamenković OS, Veljković VB (2016) Application of ionic liquids and deep eutectic solvents in biodiesel production: a review. Renew Sust Energ Rev 61:473–500

    Article  CAS  Google Scholar 

  117. Wazeer I, Hadj-kali MK (2017) Deep eutectic solvents: designer fluids for chemical processes. J Chem Tech & Biotech 93:945–958

    Article  CAS  Google Scholar 

  118. Xu P, Zheng GW, Zong MH, Li N, Lou WY (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:34

    Article  Google Scholar 

  119. Zdanowicz M, Wilpiszewska K, Spychaj T (2018) Deep eutectic solvents for polysaccharides processing. A review. Carbohydr Polym 200:361–380

    Article  CAS  Google Scholar 

  120. Abbott AP (2004) Application of hole theory to the viscosity of ionic and molecular liquids. ChemPhysChem 5:1242–1246

    Article  CAS  Google Scholar 

  121. Rengstl D, Fischer V, Kunz W (2014) Low-melting mixtures based on choline ionic liquids. Phys Chem Chem Phys 16:22815–22822

    Article  CAS  Google Scholar 

  122. Hayyan M, Hashim MA, Al-Saadi MA, Hayyan A, AlNashef IM, Mirghani MES (2013) Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. Chemosphere 93:455–459

    Article  CAS  Google Scholar 

  123. Hayyan M, Hashim MA, Hayyan A, Al-Saadi MA, AlNashef IM, Mirghani MES, Saheed OK (2013) Are deep eutectic solvents benign or toxic? Chemosphere 90:2193–2195

    Article  CAS  Google Scholar 

  124. Juneidi I, Hayyan M, Mohd Ali O (2016) Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish. Environ Sci Pollut Res 23:7648–7659

    Article  CAS  Google Scholar 

  125. Mbous YP, Hayyan M, Hayyan A, Wong WF, Hashim MA, Looi CY (2017) Applications of deep eutectic solvents in biotechnology and bioengineering—promises and challenges. Biotechnol Adv 35:105–134

    Article  CAS  Google Scholar 

  126. Li X, Hou M, Han B, Wang X, Zou L (2008) Solubility of CO2 in a choline chloride + urea eutectic mixture. J Chem Eng Data 53:548–550

    Article  CAS  Google Scholar 

  127. Leron RB, Li MH (2013) Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent. Thermochim Acta 551:14–19

    Article  CAS  Google Scholar 

  128. Leron RB, Li MH (2013) Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures. J Chem Thermodyn 57:131–136

    Article  CAS  Google Scholar 

  129. Li G, Deng D, Chen Y, Shan H, Ai N (2014) Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents. J Chem Thermodyn 75:58–62

    Article  CAS  Google Scholar 

  130. Lu M, Han G, Jiang Y, Zhang X, Deng D, Ai N (2015) Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride. J Chem Thermodyn 88:72–77

    Article  CAS  Google Scholar 

  131. Chen Y, Ai N, Li G, Shan H, Cui Y, Deng D (2014) Solubilities of carbon dioxide in eutectic mixtures of choline chloride and dihydric alcohols. J Chem Eng Data 59:1247–1253

    Article  CAS  Google Scholar 

  132. Liu X, Gao B, Jiang Y, Deng D (2017) Solubilities and thermodynamic properties of carbon dioxide in guaiacol-based deep eutectic solvents. J Chem Eng Data 62:1448–1455

    Article  CAS  Google Scholar 

  133. Haider MB, Jha D, Sivagnanam BM, Kumar R (2018) Thermodynamic and kinetic studies of CO2 capture by glycol and 2 amine-based deep eutectic solvents. J Chem Eng Data 63:2671–2680

    Article  CAS  Google Scholar 

  134. Leron RB, Caparanga A, Li MH (2013) Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15-343.15K and moderate pressures. J Taiwan Inst Chem Eng 44:879–885

    Article  CAS  Google Scholar 

  135. Su WC, Wong DSH, Li MH (2009) Effect of water on solubility of carbon dioxide in (Aminomethanamide + 2-Hydroxy-N,N,N-trimethylethanaminium chloride). J Chem Eng Data 54:1951–1955

    Article  CAS  Google Scholar 

  136. Uma Maheswari A, Palanivelu K (2015) Carbon dioxide capture and utilization by alkanolamines in deep eutectic solvent medium. Ind Eng Chem Res 54:11383–11392

    Article  CAS  Google Scholar 

  137. Ali E, Hadj-Kali MK, Mulyono S, Alnashef I, Fakeeha A, Mjalli F, Hayyan A (2014) Solubility of CO2 in deep eutectic solvents: experiments and modelling using the Peng-Robinson equation of state. Chem Eng Res Des 92:1898–1906

    Article  CAS  Google Scholar 

  138. Sze LL, Pandey S, Ravula S, Pandey S, Zhao H, Baker GA, Baker SN (2014) Ternary deep eutectic solvents tasked for carbon dioxide capture. ACS Sustain Chem Eng 2:2117–2123

    Article  CAS  Google Scholar 

  139. Bhawna A, Pandey S (2017) Superbase-added choline chloride-based deep eutectic solvents for CO2 capture and sequestration. Chem Select 2:11422–11430

    CAS  Google Scholar 

  140. Trivedi TJ, Lee JH, Lee HJ, Jeong YK, Choi JW (2014) Deep eutectic solvents as attractive media for CO2 capture. Green Chem 18:2834–2842

    Article  CAS  Google Scholar 

  141. Ghaedi H, Ayoub M, Sufian S, Shariff AM, Hailegiorgis SM, Khan SN (2017) CO2 capture with the help of phosphonium-based deep eutectic solvents. J Mol Liq 243:564–571

    Article  CAS  Google Scholar 

  142. Ghaedi H, Ayoub M, Sufian S, Murshid G, Farrukh S, Shariff AM (2017) Investigation of various process parameters on the solubility of carbon dioxide in phosphonium-based deep eutectic solvents and their aqueous mixtures: experimental and modeling. Int J Greenh Gas Control 66:147–158

    Article  CAS  Google Scholar 

  143. Haider MB, Jha D, Kumar R, Marriyappan Sivagnanam B (2020) Ternary hydrophobic deep eutectic solvents for carbon dioxide absorption. Int J Greenh Gas Control 92:102839

    Article  CAS  Google Scholar 

  144. Zubeir LF, Van Osch DJGP, Rocha MAA, Banat F, Kroon MC (2018) Carbon dioxide solubilities in decanoic acid-based hydrophobic deep eutectic solvents. J Chem Eng Data 63:913–919

    Article  CAS  Google Scholar 

  145. Haider MB, Jha D, Marriyappan Sivagnanam B, Kumar R (2019) Modelling and simulation of CO2 removal from shale gas using deep eutectic solvents. J Environ Chem Eng 7:102747

    Article  CAS  Google Scholar 

  146. Haider MB, Kumar R (2020) Solubility of CO2 and CH4 in sterically hindered amine-based deep eutectic solvents. Sep Purif Technol 248:117055

    Article  CAS  Google Scholar 

  147. Sarmad S, Xie Y, Mikkola J-P, Ji X (2017) Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity. New J Chem 41:290–301

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haider, M.B., Tripathi, M.M., Hussain, Z., Kumar, R. (2021). Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_20

Download citation

Publish with us

Policies and ethics