Skip to main content

Fischer-Tropsch Synthesis in Silicon and 3D Printed Stainless Steel Microchannel Microreactors

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

In recent years, environmental challenges have led to a focus on the production of clean synthetic fuels from different carbon sources using Fischer-Tropsch (FT) synthesis. Catalyst development and reactor improvements are the major points of interest to obtain high selectivity toward desired hydrocarbons in FT synthesis. The first part of this chapter summarizes the fundamentals of FT synthesis, catalysts, and possible reaction mechanisms, the drawbacks of present synthesis reactors, and how microchannel microreactor (specified as microreactor in this chapter) technology addresses them with its unique characteristics. Two case studies are presented to describe catalyst screening for FT synthesis in two types of microreactors: Silicon (Si) microreactors are fabricated using conventional microfabrication techniques with dimensions 1.6 cm × 50 μm × 100 μm. Stainless steel (SS) 3D printed microreactors of dimensions 2.4 cm × 500 μm × 500 μm are fabricated by direct metal laser sintering method. The FT studies with Si and SS microreactors coated with different catalysts/supports and temperature-programmed reduction (TPR) experiments with H2 not only provide insight into metal-support interactions but also catalyst performance in terms of kinetics, selectivity, CO conversion, and stability. Conversion of syngas enriched with CO2 and CO2 utilization in FT synthesis are the key factors in the production of next-generation biofuels. A case study on the effect of silica and alumina promoters on Co-Fe-K precipitated catalysts in a lab-scale reactor to enhance CO2 utilization in FT synthesis is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maitlis PM, de Klerk A (2013) Greener Fischer-tropsch processes: for fuels and feedstocks. Wiley, Hoboken

    Book  Google Scholar 

  2. Basha OM, Sehabiague L, Abdel-Wahab A, Morsi BI (2015) Fischer–Tropsch synthesis in slurry bubble column reactors: experimental investigations and modeling–a review. Int J Chem React Eng 13(3):201–288

    Article  CAS  Google Scholar 

  3. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer–Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4(8):2210–2229. https://doi.org/10.1039/C4CY00327F

    Article  CAS  Google Scholar 

  4. Dry ME (1976) Advances in Fischer-Tropsch chemistry. Ind Eng Chem Process Des Dev 15:282–286

    Article  CAS  Google Scholar 

  5. Schulz H (1999) Short history and present trends of Fischer-Tropsch synthesis. Appl Catal A Gen 186:3–12

    Article  CAS  Google Scholar 

  6. Dry ME (1976) Advances in Fishcher-Tropsch chemistry. Ind Eng Chem Prod Res Dev 15(4):282–286

    Article  CAS  Google Scholar 

  7. Dry M (1990) The Fischer-Tropsch process-commercial aspects. Catal Today 6(3):183–206

    Google Scholar 

  8. (2011) Thermochemical processing of biomass conversion into fuels, chemicals and power (Wiley series in renewable resources). Wiley, Hoboken

    Google Scholar 

  9. Van Der Laan GP, Beenackers AACM (1999) Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal Rev 41(3–4):255–318

    Article  Google Scholar 

  10. Rofer-DePoorter CK (1981) A comprehensive mechanism for the Fischer-Tropsch synthesis. Chem Rev 81:447–474

    Article  CAS  Google Scholar 

  11. Ponec V, van Barneveld WAJI (1979) The role of chemisorption of Fischer-Tropsch synthesis. Ind Eng Chem Prod Res Dev 18(4):268–271

    Article  CAS  Google Scholar 

  12. Wojciechowski BW (1988) The kinetics of the Fischer-Tropsch synthesis. Catal Rev Sci Eng 30(4):629–702

    Article  CAS  Google Scholar 

  13. Biloen P, Sachtler W (1981) Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts. In: Advances in catalysis, vol 30. Elsevier, Amsterdam, pp 165–216

    Google Scholar 

  14. Zennaro R (2013) Fischer–Tropsch process economics. In: Greener Fischer-Tropsch processes for fuels and feedstocks. Wiley-VCH, Chichester, pp 149–169

    Chapter  Google Scholar 

  15. Ehrfeld W, Hessel V, Löwe H (2000) Microreactors: new technology for modern chemistry. Wiley, Weinheim

    Book  Google Scholar 

  16. Oroskar A, Van den Bussche K, Abdo S (2001) Intensification in microstructured unit operations performance comparison between mega and micro scale. In: Matlosz M, Ehrfeld W, Baselt J (eds) Microreaction technology. Springer, Berlin, pp 153–163

    Chapter  Google Scholar 

  17. Tonkovich A et al (2008) Improved Fischer-Tropsch Economics Enabled by Microchannel Technology. Velocys Technology, Plain City

    Google Scholar 

  18. LeViness S, Tonkovich A, Jarosch K, Fitzgerald S, Yang B, McDaniel J (2011) Improved Fischer-Tropsch Economics Enabled by Microchannel Technology. White Paper generated by Velocys

    Google Scholar 

  19. Schubert K, Bier W, Brandner J, Fichtner M, Franz C, Linder G (1998) Realization and testing of microstructure reactors, micro heat exchangers and micro mixers for industrial applications in chemical engineering (in English)

    Google Scholar 

  20. Jarosch Kai T, Tonkovich Anna Y Lee T Perry Steven DK, Wang Y (2005) Microchannel reactors for intensifying gas-to-liquid technology. In: Microreactor technology and process intensification, vol 914 (ACS symposium series, no. 914). American Chemical Society, pp 258–272 ISBN13 9780841239234, https://doi.org/10.1021/bk-2005-0914.ch016

  21. Tomlinson H, Roth E, Agee K (2004) Movable gas-to-liquid system and process. Google Patents

    Google Scholar 

  22. Cai G, Xue L, Zhang H, Lin JJM (2017) A review on micromixers. Micromachines 8(9):274

    Article  Google Scholar 

  23. Ehrfeld W, Golbig K, Hessel V, Löwe H, Richter T (1999) Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind Eng Chem Res 38(3):1075–1082

    Article  CAS  Google Scholar 

  24. Mohammad N, Bepari S, Aravamudhan S, Kuila DJC (2019) Kinetics of Fischer–Tropsch synthesis in a 3-D printed stainless steel microreactor using different mesoporous silica supported Co-Ru catalysts. Catalysts 9(10):872

    Article  CAS  Google Scholar 

  25. Abrokwah RY, Rahman MM, Deshmane VG, Kuila D (2019) Effect of titania support on Fischer-Tropsch synthesis using cobalt, iron, and ruthenium catalysts in silicon-microchannel microreactor. Mol Catal 478:110566

    Article  CAS  Google Scholar 

  26. Scotti G, Franssila S (2014) A micro heat exchanger microfabricated from bulk aluminium. J Phys Conf Ser 557:012069

    Article  Google Scholar 

  27. Yang C-Y, Yeh C-T, Liu W-C, Yang B-C (2007) Advanced micro-heat exchangers for high heat flux. Heat Transf Eng 28:788–794

    Article  CAS  Google Scholar 

  28. Roydhouse MD et al (2014) Operating ranges of gas–liquid capillary microseparators: experiments and theory. Chem Eng Sci 114:30–39

    Article  CAS  Google Scholar 

  29. Breeze P (2016) Chapter 8 - Microturbines. In: Breeze P (ed) Gas-turbine power generation. Academic Press, Boston, pp 77–82

    Chapter  Google Scholar 

  30. Zhao S, Nagineni VS, Seetala NV, Kuila D (2008) Microreactors for syngas conversion to higher alkanes: effect of ruthenium on silica-supported iron−cobalt nanocatalysts. Ind Eng Chem Res 47:1684–1688

    Article  CAS  Google Scholar 

  31. Mehta S, Deshmane V, Zhao S, Kuila D (2014) Comparative studies of silica-encapsulated iron, cobalt, and ruthenium nanocatalysts for Fischer–Tropsch synthesis in silicon-microchannel microreactors. Ind Eng Chem Res 53:16245–16253

    Article  CAS  Google Scholar 

  32. Basha O, Gamwo I, Morsi B, Siefert N (2017) Computational fluid dynamics modeling and optimization of absorber design for pre-combustion CO2 capture. In: 34th Annual international pittsburgh coal conference, Pittsburgh

    Google Scholar 

  33. Basha OM, Morsi BI (2018) CFD for the design and optimization of slurry bubble column reactors. In: Computational fluid dynamics-basic instruments and applications in science. InTech, Rijeka

    Google Scholar 

  34. Basha Omar M, Weng L, Men Z, Badie IM (2016) CFD Modeling with Experimental Validation of the Internal Hydrodynamics in a Pilot-Scale Slurry Bubble Column Reactor. Int J Chem React Eng 14:599

    Article  Google Scholar 

  35. Shaker M, Ghaedamini H, Sasmito AP, Kurnia JC, Jangam SV, Mujumdar AS (2012) Numerical investigation of laminar mass transport enhancement in heterogeneous gaseous microreactors. Chem Eng Process Process Intens 54:1–11

    Article  CAS  Google Scholar 

  36. Perego C, Bortolo R, Zennaro R (2009) Gas to liquids technologies for natural gas reserves valorization: the Eni experience. Catal Today 142:9–16

    Article  CAS  Google Scholar 

  37. Wang L, Wu B, Li Y (2011) Effects of Ru and cu promoters on Fischer-Tropsch synthesis over Fe-based catalysts. Chin J Catal 32:495–501

    CAS  Google Scholar 

  38. Taghavi S, Tavasoli A, Asghari A, Signoretto M (2019) Loading and promoter effects on the performance of nitrogen functionalized graphene nanosheets supported cobalt Fischer-Tropsch synthesis catalysts. Int J Hydrogen Energy 44:10604–10615

    Article  CAS  Google Scholar 

  39. Phienluphon R et al (2014) Ruthenium promoted cobalt catalysts prepared by an autocombustion method directly used for Fischer–Tropsch synthesis without further reduction. Catal Sci Technol 4(9):3099–3107. https://doi.org/10.1039/C4CY00402G

    Article  CAS  Google Scholar 

  40. Olesen SE, Andersson KJ, Damsgaard CD, Chorkendorff I (2017) Deactivating carbon formation on a Ni/Al2O3 catalyst under methanation conditions. J Phys Chem C 121(29):15556–15564

    Article  CAS  Google Scholar 

  41. Fajín JLC, Gomes JRB, Cordeiro MNDS (2015) Mechanistic study of carbon monoxide methanation over pure and rhodium- or ruthenium-doped nickel catalysts. J Phys Chem C 119(29):16537–16551

    Article  Google Scholar 

  42. Vora BV, Marker T, Arnold EC, Nilsen H, Kvisle S, Fuglerud T (1998) Conversion of natural gas to ethylene and propylene: the most-profitable option. In: Parmaliana A, Sanfilippo D, Frusteri F, Vaccari A, Arena F (eds) Studies in surface science and catalysis, vol 119. Elsevier, Amsterdam, pp 955–960

    Google Scholar 

  43. Lappas A, Heracleous E (2016) 18 - Production of biofuels via Fischer–Tropsch synthesis: biomass-to-liquids. In: Luque R, Lin CSK, Wilson K, Clark J (eds) Handbook of biofuels production, 2nd edn. Woodhead Publishing, Sawston, pp 549–593

    Google Scholar 

  44. Bartholomew CH, Farrauto RJ (2011) Fundamentals of Industrial Catalytic Processes. Wiley, Chichester

    Google Scholar 

  45. Mohammad N, Abrokwah RY, Stevens-Boyd RG, Aravamudhan S, Kuila D (2020) Fischer-Tropsch studies in a 3D-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-MCM-41 catalysts. Catal Today 303:281–315

    Google Scholar 

  46. Zhao S, Kuila D (2010) Nanocatalysis in microreactor for fuels. In: Microfluidic devices in nanotechnology, (John Wiley & Sons, Inc.) pp 281–322. ISBN: 9780470590690, https://doi.org/10.1002/9780470622551

  47. Deshmane VG, Owen SL, Abrokwah RY, Kuila D (2015) Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: effect of metal-support interactions on steam reforming of methanol. J Mol Catal A Chem 408:202–213

    Google Scholar 

  48. Abrokwah RY, Deshmane VG, Kuila D (2016) Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. J Mol Catal A Chem 425:10–20

    Article  CAS  Google Scholar 

  49. Sun Y, Yang G, Zhang L, Sun Z (2017) Fischer-Tropsch synthesis in a microchannel reactor using mesoporous silica supported bimetallic Co-Ni catalyst: Process optimization and kinetic modeling. Chem Eng Process Process Intens 119:44–61

    Article  CAS  Google Scholar 

  50. Bepari S, Stevens-Boyd RG, Mohammad N, Li X, Abrokwah R, Kuila D (2020) Composite mesoporous SiO2-Al2O3 supported Fe, FeCo and FeRu catalysts for Fischer-Tropsch studies in a 3-D printed stainless-steel microreactor. Mater Today, https://doi.org/10.1016/j.matpr.2020.04.582

  51. Jun K-W, Roh H-S, Kim K-S, Ryu J-S, Lee K-W (2004) Catalytic investigation for Fischer–Tropsch synthesis from bio-mass derived syngas. Appl Catal A Gen 259(2):221–226

    Google Scholar 

  52. Rafati M, Wang L, Shahbazi A (2015) Effect of silica and alumina promoters on co-precipitated Fe–Cu–K based catalysts for the enhancement of CO2 utilization during Fischer–Tropsch synthesis. J CO2 Util 12:34–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the funding received from NSF CREST (#260326) and UNC-ROI (#110092). Part of the work was performed at North Carolina A&T State University and Joint School of Nanoscience and Nanoengineering, a member of the Southeastern Nanotechnology Infrastructure Corridor (SENIC) and National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (Grant ECCS-1542174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Kuila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammad, N. et al. (2021). Fischer-Tropsch Synthesis in Silicon and 3D Printed Stainless Steel Microchannel Microreactors. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65021-6_14

Download citation

Publish with us

Policies and ethics