Skip to main content

Furfural and Chemical Routes for Its Transformation into Various Products

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Vegetable biomass is basically made up of C6 and C5 sugars which constitutes of cellulose, hemicellulose and lignin along with other energy storage products like lipids and starches. The global interest and need to reduce the dependency on crude oil for energy have motivated and directed the researchers and scientists to explore the field of biomass as a source of energy especially for transportation fuels for vehicles. Gradual development of technology has shifted the interest to derive the conventional petroleum-based chemicals from biomass components with functional groups. Henceforth catalytic reactions, various chemical routes via heterogeneous catalysis, homogeneous processes, enzyme reactions for transformation and conversion of lignocellulosic biomass to various bio-based value-added chemicals have been extensively and widely explored, with special interests on developing environmentally friendly processes involving mineral acids, bases, etc.

Chemical transformation of sugars, which are made up of monosaccharide and disaccharides (glucose, fructose, xylose), is the most important and explored reaction pathway due to its availability in biomass primary compounds. Three important nonpetroleum-based chemicals, i.e. furfural (FUR), 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), are derived via thermal dehydration of pentose and hexose sugars. FUR is one of the important chemicals derived from biomass and also one of the key derivatives for producing significant nonpetroleum-derived chemicals. The annual production of FUR is about 300,000tTonne/year. FUR is commercially produced by hydrolysis of pentosan polymers in biomass to pentose sugars (xylose) which undergo acid catalysis under high temperatures and successive dehydration. Furfuryl alcohol (FAL) is one such important product produced from catalytic hydrogenation of FUR. Cannizzaro reaction of FUR further produces furoic acid (FuA) which is an important feedstock for organic synthesis and an intermediate compound in the production of medicines and perfumes. Further, hydroxymethylation of FUR with formaldehyde is the commercial method for producing hydroxymethylfurfural (HMF). Commercial production of furan and tetrahydrofuran (THF) is also via catalytic decarbonylation and successive hydrogenation of FUR.

The different kinds and types of catalysts used in these processes of hydrogenation, alkylation and reduction by various researchers over the period of time also need to be properly combined in a single source, so as to create an updated library of various reaction pathways done so far with FUR to produce various kinds of value-added chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoydonckx HE et al (2012) Ullmanns Encycl Ind Chem 16:285–313

    Google Scholar 

  2. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Energy Environ Sci 9(4):1144–1189

    Article  CAS  Google Scholar 

  3. Huber GW, Iborra S, Corma A (2006) Chem Rev 106(9):4044–4098

    Article  CAS  Google Scholar 

  4. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Biofuels Bioprod Biorefin 6(3):246–256

    Article  CAS  Google Scholar 

  5. Alonso DM, Bond JQ, Dumesic JA (2010) Green Chem 12(9):1493–1513

    Article  CAS  Google Scholar 

  6. Merlo AB, Vetere V, Ruggera JF, Casella ML (2009) Catal Commun 10(13):1665–1669

    Article  CAS  Google Scholar 

  7. Ahmad E, Pant KK (2018) Lignin conversion: a key to the concept of lignocellulosic biomass-based integrated biorefinery. In: Bhaskar T, Pandey A, Mohan SV, Lee D-J, Khanal SK (eds) Waste biorefinery. Elsevier, Amsterdam, pp 409–444

    Chapter  Google Scholar 

  8. Ahmad E, Alam MI, Pant KK, Haider MA (2016) Green Chem 18(18):4804–4823

    Article  CAS  Google Scholar 

  9. Corma Canos A, Iborra S, Velty A (2007) Chem Rev 107(6):2411–2502

    Article  Google Scholar 

  10. Taljaard B, Burger GJ (2002) Adv Synth Catal 344:1111–1114

    Article  CAS  Google Scholar 

  11. Yoshizawa K, Toyota S, Toda F (2001) Tetrahedron Lett 42:7983–7985

    Article  CAS  Google Scholar 

  12. Wang C, Li M (2002) Synth Commun 32(22):3469–3473

    Article  CAS  Google Scholar 

  13. Li T, Gao Y (1998) Synth Commun 28:4665–4671

    Article  CAS  Google Scholar 

  14. Pereira C, Gigante B, Marcelo-Curto MJ (1995) Synthesis 09:1077–1078

    Article  Google Scholar 

  15. Romanelli GP, Bennardi D, Ruiz DM, Baronetti G, Thomas HJ, Autino JC (2004) Tetrahedron Lett 45:8935–8939

    Article  CAS  Google Scholar 

  16. Kantom ML et al (1998) Chem Commun 1:1033–1034

    Article  Google Scholar 

  17. Loupy A et al (2001) J Chem Soc Perkin Trans 1:1220–1222

    Article  Google Scholar 

  18. Kwon PK et al (1997) Synth Commun 27:4091–4100

    Article  CAS  Google Scholar 

  19. Milas NA, Walsh WL, Am J (1935) Chem Soc 57:1389–1390

    Article  CAS  Google Scholar 

  20. Esser P, Pohlmann B, Scharf HD (1994) Angew Chem 106:2093–2108

    Article  CAS  Google Scholar 

  21. Dunlop AP, Peters FN (1953) ACS monograph series: the furans. Reinhold Publishing Corp., New York, NY, pp 152–156

    Google Scholar 

  22. Gandini A, Belgacem MN (1997) Prog Polym Sci 22:1203–1379

    Article  CAS  Google Scholar 

  23. Granados ML, Alba-Rubio AC, Sádaba I, Mariscal R, Mateos-Aparicio I, Heras Á (2011) Green Chem 13(11):3203–3212

    Article  CAS  Google Scholar 

  24. Lee SP, Chen YW (1999) Ind Eng Chem Res 38(7):2548–2556

    Article  CAS  Google Scholar 

  25. Vaidya PD, Mahajani VV (2003) Ind Eng Chem Res 42(17):3881–3885

    Article  CAS  Google Scholar 

  26. O’Neill BJ et al (2013) Angew Chem Int Ed 52(51):13808–13812

    Article  Google Scholar 

  27. Corma A, Domine ME, Nemeth L, Valencia S (2002) J Am Chem Soc 124(13):3194–3195

    Article  CAS  Google Scholar 

  28. Yan K, Liao J, Wu X, Xie X (2013) RSC Adv 3(12):3853–3856

    Article  CAS  Google Scholar 

  29. López-Asensio R, Cecilia JA, Jiménez-Gómez CP, García-Sancho C, Moreno-Tost R, Maireles-Torres P (2018) Appl Catal A Gen 556:1–9

    Article  Google Scholar 

  30. He J, Li H, Riisager A, Yang S (2018) ChemCatChem 10(2):430–438

    Article  CAS  Google Scholar 

  31. Wu W et al (2018) Catal Commun 105:6–10

    Article  CAS  Google Scholar 

  32. Vetere V, Merlo AB, Ruggera JF, Casella ML (2010) J Braz Chem Soc 21(5):914–920

    Article  CAS  Google Scholar 

  33. Srivastava S, Mohanty P, Parikh JK, Dalai AK, Amritphale SS, Khare AK (2015) Chin J Catal 36(7):933–942

    Article  CAS  Google Scholar 

  34. Romano PN, de Almeida JMAR, Carvalho Y, Priecel P, Falabella Sousa-Aguiar E, Lopez-Sanchez JA (2016) ChemSusChem 9(24):3387–3392

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazumdar, N.J., Kataki, R., Pant, K.K. (2021). Furfural and Chemical Routes for Its Transformation into Various Products. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_21

Download citation

Publish with us

Policies and ethics