Skip to main content

C(sp3)–H Bond Hetero-functionalization of Aliphatic Carboxylic Acid Equivalents Enabled by Transition Metals

  • Chapter
  • First Online:
Catalysis for Clean Energy and Environmental Sustainability

Abstract

Aliphatic carboxylic acids and their common derivatives such as amides and esters, particularly embracing heteroatom-based substituents, are widespread among natural and synthetic complex molecular frameworks, ratified drugs, and various tailored materials. Conventional synthetic processes to access these compounds comprise multistep protocols that are virtually inconvenient and unsafe, generating large mass of wastes within the synthetic sequence. The straightforward transition metal-catalyzed installation of a heteroatom-based function via transforming a selective C–H bond of an aliphatic carboxylic acid equivalent has recently materialized as an attractive substitute to those multistep processes. In the latter case, the carboxylate group, either directly or in the form of an interconvertible directing group, controls the highly selective metal-promoted hetero-functionalization process in the alkyl chain residue through extraordinarily ordered transition states.

The current chapter summarizes the advances in the field of transition metal-enabled C(sp3)–H bond hetero-functionalization of aliphatic carboxylic acids and their synthetic equivalents. Due to substantial progress in recent years, only frequently employed transition metals, including palladium, nickel, copper, iron, and cobalt, which promoted reactions have been described. The chapter has been divided into two key subtopics: (1) directed C(sp3)–H hetero-functionalization approaches, in which the carboxylic acid or a promptly adaptable carboxylate equivalent actively binds to the metal catalyst and brings it close to the cleavable C(sp3)–H bond to facilitate further functionalization, and (2) non-directed C(sp3)–H hetero-functionalization approaches, in which the carboxylic acid equivalents passively control the metal-promoted C(sp3)–H functionalization. Gratifyingly, both approaches lead to regiospecific functionalization of carboxylic acid synthons at either proximal-selective α-C–H bonds or distal β-, γ-, and even δ-C–H bonds with various heteroatom-based substituents, e.g., O-, N-, S-, Se-, halogen-, B-, Si-, and recently Ge-based groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hansch C, Sammes PG, Taylor JB (eds) (1990) Comprehensive medicinal chemistry: the rational design, mechanistic study & therapeutic application of chemical compounds. Pergamon Press, Oxford, pp 12–27

    Google Scholar 

  2. Harada N, Watanabe M, Kuwahara S, Sugio A, Kasai Y, Ichikawa A (2000) 2-Methoxy-2-(1-naphthyl)propionic acid, a powerful chiral auxiliary for enantioresolution of alcohols and determination of their absolute configurations by the 1H NMR anisotropy method. Tetrahedron Asymmetry 11:1249–1253

    Google Scholar 

  3. Fraústo da Silva JR, RJP W (eds) (2001) The biological chemistry of the elements. Oxford University Press, New York

    Google Scholar 

  4. Kasai Y, Watanabe M, Harada N (2003) Convenient method for determining the absolute configuration of chiral alcohols with racemic 1H NMR anisotropy reagent, MαNP acid: Use of HPLC‐CD detector. Chirality 15:295–299

    Google Scholar 

  5. Seco JM, Quiñoá E, Riguera R (2004) The assignment of absolute configuration by NMR. Chem Rev 104:17–118

    Google Scholar 

  6. Carballeira NM, Miranda C, Orellano EA, González FA (2005) Synthesis of a novel series of 2-methylsulfanyl fatty acids and their toxicity on the human K-562 and U-937 leukemia cell lines. Lipids 40:1063–1067

    Google Scholar 

  7. Mellah M, Voituriez A, Schulz E (2007) Chiral sulfur ligands for asymmetric catalysis. Chem Rev 107:5133–5209

    Google Scholar 

  8. Deaton DN, Gao EN, Graham KP, Gross JW, Miller AB, Strelow JM (2008) Thiol-based angiotensin-converting enzyme 2 inhibitors: P1 modifications for the exploration of the S1 subsite. Bioorg Med Chem Lett 18:732–737

    Google Scholar 

  9. Maji B, Mayr H (2012) Structures and reactivities of O‐methylated breslow intermediates. Angew Chem Int Ed 51:10408–10412

    Google Scholar 

  10. Ilardi EA, Vitaku E, Njardarson JT (2014) Data-mining for sulfur and fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem 57:2832–2842

    Google Scholar 

  11. Labeeuw O, Levoin N, Billot X, Danvy D, Calmels T, Krief S, Ligneau X, Berrebi-Bertrand I, Robert P, Lecomte JM, Schwartz JC, Capet M (2016) Synthesis and evaluation of a 2-benzothiazolylphenylmethyl ether class of histamine H4 receptor antagonists. Bioorg Med Chem Lett 26:5263–5266

    Google Scholar 

  12. Carballeira NM, Montano N, Morales C, Mooney J, Torres X, Díaz D, Sanabria-Rios DJ (2017) 2‐Methoxylated FA display unusual antibacterial activity towards clinical isolates of methicillin‐resistant staphylococcus aureus (CIMRSA) and escherichia coli. Lipids 52:535–548

    Google Scholar 

  13. Zimmermann SC, Duvall B, Tsukamoto T (2019) Recent progress in the discovery of allosteric inhibitors of kidney-type glutaminase. J Med Chem 62:46–59

    Google Scholar 

  14. Daugulis O, Roane J, Tran LD (2015) Bidentate, monoanionic auxiliary-directed functionalization of carbon–hydrogen bonds. Acc Chem Res 48:1053–1064

    Google Scholar 

  15. He J, Wasa M, Chan KSL, Shao Q, Yu JQ (2017) Palladium-catalyzed transformations of alkyl C–H bonds. Chem Rev 117:8754–8786

    Google Scholar 

  16. Baudoin O (2011) Transition metal-catalyzed arylation of unactivated C(sp3)–H bonds. Chem Soc Rev 40:4902–4911

    Google Scholar 

  17. Dastbaravardeh N, Christakakou M, Haider M, Schnürch M (2014) Recent advances in palladium-catalyzed C(sp3)–H activation for the formation of carbon–carbon and carbon–heteroatom bonds. Synthesis 46:1421–1439

    Google Scholar 

  18. He G, Wang B, Nack WA, Chen G (2016) Syntheses and transformations of α-amino acids via palladium-catalyzed auxiliary-directed sp3 C–H functionalization. Acc Chem Res 49:635–645

    Google Scholar 

  19. Alberico D, Scott ME, Lautens M (2007) Aryl− aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107:174–238

    Google Scholar 

  20. Wencel-Delord J, Glorius F (2013) C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem 5:369–375

    Google Scholar 

  21. Ackermann L (2014) Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C–H/Het–H bond functionalizations. Acc Chem Res 47:281–295

    Google Scholar 

  22. Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O (2010) Functionalization of organic molecules by transition‐metal‐catalyzed C(sp3)–H activation. Chem Eur J 16:2654–2672

    Google Scholar 

  23. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C−H functionalization reactions. Chem Rev 110:1147–1169

    Google Scholar 

  24. Bhadra S, Yamamoto H (2018) Substrate directed asymmetric reactions. Chem Rev 118:3391–3446

    Google Scholar 

  25. Mulzer J (1999) Basic principles of asymmetric synthesis. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis, vol 1. Springer, Berlin, pp 42–79

    Google Scholar 

  26. Kapdi A, Maiti D (eds) (2017) Strategies for palladium-catalyzed non-directed and directed C bond H bond functionalization. Elsevier, Amsterdam

    Google Scholar 

  27. Uttry A, van Gemmeren M (2020) Direct C(sp3)–H activation of carboxylic acids. Synthesis 52: 479-488

    Google Scholar 

  28. Kao LC, Sen A (1991) Platinum(II) catalysed selective remote oxidation of unactivated C–H bonds in aliphatic carboxylic acids. J Chem Soc Chem Commun 1242–1243

    Google Scholar 

  29. Dangel BD, Johnson JA, Sames D (2001) Selective functionalization of amino acids in water: a synthetic method via catalytic C−H bond activation. J Am Chem Soc 123:8149–8150

    Google Scholar 

  30. Janssen M, de Vos DE (2019) PtII‐catalyzed hydroxylation of terminal aliphatic C(sp3)−H bonds with molecular oxygen. Chem Eur J 25:10724–10734

    Google Scholar 

  31. Goldshleger NF, Tyabin MB, Shilov AE, Shteinman AA (1969) Zh Fiz Khim 43:2174

    CAS  Google Scholar 

  32. Goldshleger NF, Eskova VV, Shilov AE, Shteinman AA (1972) Zh Fiz Khim 46:1353–1354

    CAS  Google Scholar 

  33. Ghosh KK, Uttry A, Koldemir A, Ong M, van Gemmeren M (2019) Direct β-C(sp3)–H acetoxylation of aliphatic carboxylic acids. Org Lett 21:7154–7157

    Google Scholar 

  34. Giri R, Liang J, Lei JG, Li JJ, Wang DH, Chen X, Naggar IC, Guo C, Foxman BM, Yu JQ (2005) Pd‐catalyzed stereoselective oxidation of methyl groups by inexpensive oxidants under mild conditions: a dual role for carboxylic anhydrides in catalytic C-H bond oxidation. Angew Chem Int Ed 44:7420–7424

    Google Scholar 

  35. He J, Shigenari T, Yu JQ (2015) Palladium(0)/PAr3‐catalyzed intermolecular amination of C(sp3)–H bonds: synthesis of β‐amino acids. Angew Chem Int Ed 54:6545–6549

    Google Scholar 

  36. Wasa M, Engle KM, Yu JQ (2009) Pd(0)/PR3-catalyzed intermolecular arylation of sp3 C−H bonds. J Am Chem Soc 131:9886–9887

    Google Scholar 

  37. Tan Y, Hartwig JF (2010) Palladium-catalyzed amination of aromatic C−H bonds with oxime esters. J Am Chem Soc 132:3676–3677

    Google Scholar 

  38. Fürstner A, Seidel G (2002) Microwave-assisted synthesis of pinacol boronates from aryl chlorides catalyzed by a palladium/imidazolium salt system. Org Lett 4:541–543

    Google Scholar 

  39. Billingsley KL, Barder TE, Buchwald SL (2007) Palladium‐catalyzed borylation of aryl chlorides: Scope, applications, and computational studies. Angew Chem Int Ed 46:5359–5363

    Google Scholar 

  40. Billingsley KL, Buchwald SL (2008) An improved system for the palladium-catalyzed borylation of aryl halides with pinacol borane. J Org Chem 73:5589–5591

    Google Scholar 

  41. Molander GA, Trice SLJ, Dreher SD (2010) Palladium-catalyzed, direct boronic acid synthesis from aryl chlorides: A simplified route to diverse boronate ester derivatives. J Am Chem Soc 132:17701–17703

    Google Scholar 

  42. Dai HX, Yu JQ (2012) Pd-catalyzed oxidative ortho-C–H borylation of arenes. J Am Chem Soc 134:134–137

    Google Scholar 

  43. Zhang LS, Chen G, Wang X, Guo QY, Zhang XS, Pan F, Chen K, Shi ZJ (2014) Direct borylation of primary C–H bonds in functionalized molecules by palladium catalysis. Angew Chem Int Ed 53:3899–3903

    Google Scholar 

  44. He J, Jiang H, Takise R, Zhu RY, Chen G, Dai HX, Murali Dhar TG, Shi J, Zhang H, Cheng PTW, Yu JQ (2016) Ligand‐promoted borylation of C(sp3)–H bonds with palladium(II) catalysts. Angew Chem Int Ed 55:785–789

    Google Scholar 

  45. He J, Shao Q, Wu Q, Yu JQ (2017) Pd(II)-Catalyzed enantioselective C(sp3)–H borylation. J Am Chem Soc 139:3344–3347

    Google Scholar 

  46. Shi Y, Gao Q, Xu S (2019) Chiral bidentate boryl ligand enabled iridium-catalyzed enantioselective C(sp3)–H borylation of cyclopropanes. J Am Chem Soc 141:10599–10604

    Google Scholar 

  47. Murakami R, Iwai T, Sawamura M (2016) Site-selective and stereoselective C(sp3)-H borylation of alkyl side chains of 1,3-azoles with a silica-supported monophosphine-iridium catalyst. Synlett 27:1187–1192

    Google Scholar 

  48. Giri R, Chen X, Yu JQ (2005) Palladium‐catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew Chem Int Ed 44:2112–2115

    Google Scholar 

  49. He J, Li S, Deng Y, Fu H, Laforteza BN, Spangler JE, Homs A, Yu JQ (2014) Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science 343:1216–1220

    Google Scholar 

  50. Zhu RY, Saint-Denis TG, Shao Y, He J, Sieber JD, Senanayake CH, Yu JQ (2017) Ligand-enabled Pd(II)-catalyzed bromination and iodination of C(sp3)–H bonds. J Am Chem Soc 139:5724–5727

    Google Scholar 

  51. Zhu RY, Tanaka K, Li GC, He J, Fu HY, Li SH, Yu JQ (2015) Ligand-enabled stereoselective β-C(sp3)–H fluorination: Synthesis of unnatural enantiopure anti-β-fluoro-α-amino acids. J Am Chem Soc 137:7067–7070

    Google Scholar 

  52. Zaitsev VG, Shabashov D, Daugulis O (2005) Highly regioselective arylation of sp3 C−H bonds catalyzed by palladium acetate. J Am Chem Soc 127:13154–13155

    Google Scholar 

  53. Rouquet G, Chatani N (2013) Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups. Angew Chem Int Ed 52:11726–11743

    Google Scholar 

  54. Castro LCM, Chatani N (2015) Nickel catalysts/N,N′-bidentate directing groups: an excellent partnership in directed C–H activation reactions. Chem Lett 44:410–421

    Google Scholar 

  55. Liu J, Chen G, Tan Z (2016) Copper‐catalyzed or‐mediated C–H bond functionalizations assisted by bidentate directing groups. Adv Synth Catal 358:1174–1194

    Google Scholar 

  56. Reddy BVS, Reddy LR, Corey EJ (2006) Novel acetoxylation and C−C coupling reactions at unactivated positions in α-amino acid derivatives. Org Lett 8:3391–3394

    Google Scholar 

  57. Caldwell CG, Bondy SS (1990) A convenient synthesis of enantiomerically pure (2S,3S)- or (2R,3R)-3-hydroxyleucine. Synthesis 34–36

    Google Scholar 

  58. Panek JS, Masse CE (1998) An improved synthesis of (4S,5S)-2-phenyl-4-(methoxycarbonyl)-5-isopropyloxazoline from (S)-phenylglycinol. J Org Chem 63:2382–2384

    Google Scholar 

  59. MacMillan JB, Molinsky TF (2002) Lobocyclamide B from Lyngbya confervoides. configuration and asymmetric synthesis of β-hydroxy-α-amino acids by (−)-Sparteine-mediated aldol addition. Org Lett 4:1883–1886

    Google Scholar 

  60. Saravanan P, Corey EJ (2003) A short, stereocontrolled, and practical synthesis of α-methylomuralide, a potent inhibitor of proteasome function. J Org Chem 68:2760–2764

    Google Scholar 

  61. Wang Z, Kuninobu Y, Kanai M (2014) Copper-mediated direct C(sp3)–H and C(sp2)–H acetoxylation. Org Lett 16:4790–4793

    Google Scholar 

  62. Rit RK, Yadav MR, Sahoo AK (2012) Pd(II)-catalyzed primary-C(sp3)–H acyloxylation at room temperature. Org Lett 14:3724–3727

    Google Scholar 

  63. Rit RK, Yadav MR, Ghosh K, Sahoo AK (2015) Reusable directing groups [8-aminoquinoline, picolinamide, sulfoximine] in C(sp3)–H bond activation: present and future. Tetrahedron 71:4450–4459

    Google Scholar 

  64. Shan G, Yang X, Zong Y, Rao Y (2013) An efficient palladium‐catalyzed C-H alkoxylation of unactivated methylene and methyl groups with cyclic hypervalent iodine (I3+) oxidants. Angew Chem Int Ed 52:13606–13610

    Google Scholar 

  65. Zong Y, Rao Y (2014) Developing Pd(II) catalyzed double sp3 C–H alkoxylation for synthesis of symmetric and unsymmetric acetals. Org Lett 16:5278–5281

    Google Scholar 

  66. Chen FJ, Zhao S, Hu F, Chen K, Zhang Q, Zhang SQ, Shi BF (2013) Pd(II)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chem Sci 4:4187–4192

    Google Scholar 

  67. Jerhaoui S, Djukic JP, Wencel-Delord J, Colobert F (2017) Stereoselective sulfinyl aniline‐promoted Pd‐catalyzed C−H arylation and acetoxylation of aliphatic amides. Chem Eur J 23:15594–15600

    Google Scholar 

  68. Kim Y, Kim S, Kang D, Sohn T, Jang E, Baik M, Hong S (2018) Stereoselective construction of sterically hindered oxaspirocycles via chiral bidentate directing group-mediated C(sp3)–O bond formation. Chem Sci 9:1473–1480

    Google Scholar 

  69. Hegedus LL, McCabe RW (eds) (1984) Catalyst poisoning. Marcel Dekker, New York

    Google Scholar 

  70. Yan SY, Liu YJ, Liu B, Liu YH, Zhang ZZ, Shi BF (2015) Nickel-catalyzed direct thiolation of unactivated C(sp3)–H bonds with disulfides. Chem Commun 51:7341–7344

    Google Scholar 

  71. Wang X, Qiu R, Yan C, Reddy VP, Zhu L, Xu X, Yin SF (2015) Nickel-catalyzed direct thiolation of C(sp3)–H bonds in aliphatic amides. Org Lett 17:1970–1973

    Google Scholar 

  72. Ye X, Petersen JL, Shi X (2015) Nickel-catalyzed directed sulfenylation of sp2 and sp3 C–H bonds. Chem Commun 51:7863–7866

    Google Scholar 

  73. Rao WH, Zhan BB, Chen K, Ling PX, Zhang ZZ, Shi BF (2015) Pd(II)-catalyzed direct sulfonylation of unactivated C(sp3)–H bonds with sodium sulfinates. Org Lett 17:3552–3555

    Google Scholar 

  74. Xiong HY, Besset T, Cahard D, Pannecoucke X (2015) Palladium(II)-catalyzed directed trifluoromethylthiolation of unactivated C(sp3)–H bonds. J Org Chem 80:4204–4212

    Google Scholar 

  75. Topczewski JJ, Sanford MS (2015) Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis. Chem Sci 6 :70–76

    Google Scholar 

  76. Canty AJ, Ariafard A, Yates BF, Sanford MS (2015) Computational study of intramolecular arene palladation at a palladium(IV) center. Organometallics 34:1085–1090

    Google Scholar 

  77. Guin S, Deb A, Dolui P, Chakraborty S, Singh VK, Maiti D (2018) Promoting highly diastereoselective γ-C–H chalcogenation of α-amino acids and aliphatic carboxylic acids. ACS Catal 8:2664–2669

    Google Scholar 

  78. He G, Zhang SY, Nack WA, Li Q, Chen G (2013) Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones by the Palladium‐catalyzed intramolecular amination of unactivated γ C(sp3)-H bonds. Angew Chem Int Ed 52:11124–11128

    Google Scholar 

  79. Zhang Q, Chen K, Rao W, Zhang Y, Chen FJ, Shi BF (2013) Stereoselective synthesis of chiral α‐amino‐β‐lactams through palladium(II)‐catalyzed sequential monoarylation/amidation of C(sp3)-H Bonds. Angew Chem Int Ed 52:13588–13592

    Google Scholar 

  80. Ling PX, Fang SL, Yin XS, Zhang Q, Chen K, Shi BF (2017) Palladium-catalyzed sequential monoarylation/amidation of C(sp3)–H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chem Commun 53:6351–6354

    Google Scholar 

  81. Sun WW, Cao P, Mei RQ, Li Y, Ma YL, Wu B (2014) Palladium-catalyzed unactivated C(sp3)–H bond activation and intramolecular amination of carboxamides: A new approach to β-lactams. Org Lett 16:480–483

    Google Scholar 

  82. Zhang SJ, Sun WW, Cao P, Dong XP, Liu JK, Wu B (2016) Stereoselective synthesis of diazabicyclic β-lactams through intramolecular amination of unactivated C(sp3)–H bonds of carboxamides by palladium catalysis. J Org Chem 81:956–968

    Google Scholar 

  83. Wang Z, Ni J, Kuninobu Y, Kanai M (2014) Copper‐catalyzed intramolecular C(sp3)-H and C(sp2)-H amidation by oxidative cyclization. Angew Chem Int Ed 53:3496–3499

    Google Scholar 

  84. Wu X, Zhao Y, Zhang G, Ge H (2014) Copper‐catalyzed site‐selective intramolecular amidation of unactivated C(sp3)-H bonds. Angew Chem Int Ed 53:3706–3710

    Google Scholar 

  85. Wang C, Yang Y, Qin D, He Z, You J (2015) Copper-catalyzed intramolecular dehydrogenative amidation of unactivated C(sp3)–H bonds using O2 as the sole oxidant. J Org Chem 80:8424–8429

    Google Scholar 

  86. Desai LV, Malik HA, Sanford MS (2006) Oxone as an inexpensive, safe, and environmentally benign oxidant for C−H bond oxygenation. Org Lett 8:1141–1144

    Google Scholar 

  87. Wang GW, Yuan TT (2010) Palladium-catalyzed alkoxylation of N-methoxybenzamides via direct sp2 C−H bond activation. J Org Chem 75:476–479

    Google Scholar 

  88. Suess AM, Ertem MZ, Cramer CJ, Stahl SS (2013) Divergence between organometallic and single-electron-transfer mechanisms in copper(II)-mediated aerobic C–H oxidation. J Am Chem Soc 135:9797–9804

    Google Scholar 

  89. Aihara Y, Chatani N (2014) Nickel-catalyzed direct arylation of C(sp3)–H bonds in aliphatic amides via bidentate-chelation assistance. J Am Chem Soc 136:898–901

    Google Scholar 

  90. Wu XS, Zhao Y, Ge HB (2014) Nickel-catalyzed site-selective alkylation of unactivated C(sp3)–H bonds. J Am Chem Soc 136:1789–1792

    Google Scholar 

  91. Li ML, Dong JX, Huang XL, Li KZ, Wu Q, Song FJ, You JS (2014) Nickel-catalyzed chelation-assisted direct arylation of unactivated C(sp3)–H bonds with aryl halides. Chem Commun 50:3944–3946

    Google Scholar 

  92. Wu X, Zhao Y, Ge H (2014) Nickel‐catalyzed site‐selective amidation of unactivated C(sp3)-H bonds. Chem Eur J 20:9530–9533

    Google Scholar 

  93. Aihara Y, Chatani N (2016) Nickel-catalyzed reaction of C–H bonds in amides with I2: ortho-iodination via the cleavage of C(sp2)–H bonds and oxidative cyclization to β-lactams via the cleavage of C(sp3)–H bonds. ACS Catal 6:4323–4329

    Google Scholar 

  94. Wu X, Yang K, Zhao Y, Sun H, Li G, Ge H (2015) Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons. Nature Commun 6:6462. https://doi.org/10.1038/ncomms7462

  95. Gou Q, Liu G, Liu ZN, Qin J (2015) PdII‐catalyzed intermolecular amination of unactivated C(sp3)-H bonds. Chem Eur J 21:15491–15495

    Google Scholar 

  96. Bai HY, Ma ZG, Yi M, Lin JB, Zhang SY (2017) Palladium-catalyzed direct intermolecular amination of unactivated methylene C(sp3)–H bonds with azodiformates via bidentate-chelation assistance. ACS Catal 7:2042–2046

    Google Scholar 

  97. Kanyiva KS, Kuninobu Y, Kanai M (2014) Palladium-catalyzed direct C–H silylation and germanylation of benzamides and carboxamides. Org Lett 16:1968–1971

    Google Scholar 

  98. Liu YJ, Liu YH, Zhang ZZ, Yan SY, Chen K, Shi BF (2016) Divergent and stereoselective synthesis of β-silyl-α-amino acids through palladium-catalyzed intermolecular silylation of unactivated primary and secondary C-H bonds. Angew Chem Int Ed 55:13859–13862

    Google Scholar 

  99. Pan JL, Li QZ, Zhang TY, Hou SH, Kang JC, Zhang SY (2016) Palladium-catalyzed direct intermolecular silylation of remote unactivated C(sp3)–H bonds. Chem Commun 52:13151–13154

    Google Scholar 

  100. Deb A, Singh S, Seth K, Pimparkar S, Bhaskararao B, Guin S, Sunoj RB, Maiti D (2017) Experimental and computational studies on remote γ-C(sp3)–H silylation and germanylation of aliphatic carboxamides. ACS Catal 7:8171–8175

    Google Scholar 

  101. Wheelaghan OR, Ortuño MA, Díez J, Garrido SEG, Maya C, Lledos A, Conejero S (2012) Characterization of a paramagnetic, mononuclear Pt(III)–alkyl complex intermediate in carbon–halogen bond coupling reactions. J Am Chem Soc 134:15261–15264

    Google Scholar 

  102. Kaspi AW, Goldberg I, Vigalok A (2010) Reagent-dependent formation of C−C and C−F bonds in Pt complexes: An unexpected twist in the electrophilic fluorination chemistry. J Am Chem Soc 132:10626–10627

    Google Scholar 

  103. Roy AH, Hartwig JF (2004) Reductive elimination of aryl halides upon addition of hindered alkylphosphines to dimeric arylpalladium(II) halide complexes. Organometallics 23:1533–1541

    Google Scholar 

  104. Canty AJ (1992) Development of organopalladium(IV) chemistry: fundamental aspects and systems for studies of mechanism in organometallic chemistry and catalysis. Acc Chem Res 25:83–90

    Google Scholar 

  105. Rit RK, Yadav MR, Ghosh K, Shankar M, Sahoo AK (2014) Sulfoximine assisted Pd(II)-catalyzed bromination and chlorination of primary β-C(sp3)–H bond. Org Lett 16:5258–5261

    Google Scholar 

  106. Yang X, Sun Y, Sun T, Rao Y (2016) Auxiliary-assisted palladium-catalyzed halogenation of unactivated C(sp3)–H bonds at room temperature. Chem Commun 52:6423–6426

    Google Scholar 

  107. Xiong HY, Cahard D, Pannecoucke X, Besset T (2016) Pd‐catalyzed directed chlorination of unactivated C(sp3)–H bonds at room temperature. Eur J Org Chem 3625–3630

    Google Scholar 

  108. Zhu Q, Ji D, Liang T, Wang X, Xu Y (2015) Efficient palladium-catalyzed C–H fluorination of C(sp3)–H bonds: Synthesis of β-fluorinated carboxylic acids. Org Lett 17:3798–3801

    Google Scholar 

  109. Sun H, Zhang Y, Chen P, Wu YD, Zhang X, Huang Y (2016) Ligand‐assisted palladium(II)/(IV) oxidation for sp3 C–H Fluorination. Adv Synth Catal 358:1946–1957

    Google Scholar 

  110. Zhang Q, Yin XS, Chen K, Zhang SQ, Shi BF (2015) Stereoselective synthesis of chiral β-fluoro α-amino acids via Pd(II)-catalyzed fluorination of unactivated methylene C(sp3)–H bonds: Scope and mechanistic studies. J Am Chem Soc 137:8219–8226

    Google Scholar 

  111. Miao J, Yang K, Kurek M, Ge H (2015) Palladium-catalyzed site-selective fluorination of unactivated C(sp3)–H bonds. Org Lett 17:3738–3741

    Google Scholar 

  112. Evans RW, Zbieg JR, Zhu S, Li W, MacMillan DWC (2013) Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: A one-step synthesis of plavix. J Am Chem Soc 135:16074–16077

    Google Scholar 

  113. Tokumasu K, Yazaki R, Ohshima T (2016) Direct catalytic chemoselective α-amination of acylpyrazoles: A concise route to unnatural α-amino acid derivatives. J Am Chem Soc 138:2664–2669

    Google Scholar 

  114. TMU T, Tejo C, DLY T, PWH C (2012) Copper(II) triflate catalyzed amination and aziridination of 2-alkyl substituted 1,3-dicarbonyl compounds. J Am Chem Soc 134:7344–7350

    Google Scholar 

  115. Zhao B, Du H, Shi Y (2008) A Cu(I)-catalyzed C−H α-amination of esters. Direct synthesis of hydantoins. J Am Chem Soc 130:7220–7221

    Google Scholar 

  116. Ford RL, Alt I, Jana N, Driver TG (2019) Intramolecular Pd-catalyzed reductive amination of enolizable sp3-C–H bonds. Org Lett 21:8827–8831

    Google Scholar 

  117. Zhi H, Ung SPM, Liu Y, Zhao L, Li CJ (2016) Phosphorylation of glycine derivatives via copper(I)‐catalyzed Csp3−H bond functionalization. Adv Synth Catal 358:2553–2557

    Google Scholar 

  118. Huang LS, Han DY, Xu DZ (2019) Iron‐catalyzed cross‐dehydrogenative coupling of oxindoles with thiols/selenols for direct C(sp3)−S/Se bond formation. Adv Synth Catal 361:4016–4021

    Google Scholar 

  119. Liu T, Myers MC, Yu JQ (2017) Copper‐catalyzed bromination of C(sp3)−H bonds distal to functional groups. Angew Chem Int Ed 56:306–309

    Google Scholar 

  120. Kumar J, Gupta A, Bhadra S (2019) PdII-catalyzed methoxylation of C(sp3)–H bonds adjacent to benzoxazoles and benzothiazoles. Org Biomol Chem 17:3314–3318

    Google Scholar 

  121. Wei Y, Deb I, Yoshikai N (2012) Palladium-catalyzed aerobic oxidative cyclization of N-aryl imines: Indole synthesis from anilines and ketones. J Am Chem Soc 134:9098–9101

    Google Scholar 

  122. Shi Z, Suri M, Glorius F (2013) Aerobic synthesis of pyrroles and dihydropyrroles from imines: Palladium(II)‐catalyzed intramolecular C–H dehydrogenative cyclization. Angew Chem Int Ed 52:4892–4896

    Google Scholar 

  123. Gupta A, Rahaman A, Bhadra S (2019) Direct α-chalcogenation of aliphatic carboxylic acid equivalents. Org Lett 21:6164–6168

    Google Scholar 

  124. Hirano M, Fukumoto Y, Matsubara N, Chatani N (2018) A cationic iridium-catalyzed C(sp3)–H silylation of 2-alkyl-1,3-azoles at the α-position in the 2-alkyl group leading to 2-(1-silylalkyl)-1,3-azoles. Chem Lett 47:385–388

    Google Scholar 

  125. Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y (2007) Direct lactone formation by using hypervalent iodine(III) reagents with KBr viaselective C−H abstraction protocol. Org Lett 9:3129–3132

    Google Scholar 

  126. Liu H, Feng W, Kee CW, Zhao Y, Leow D, Pan Y, Tan CH (2010) Organic dye photocatalyzed α-oxyamination through irradiation with visible light. Green Chem 12:953–956

    Google Scholar 

  127. Koike T, Yasu Y, Akita M (2012) Visible-light-driven oxidation of 1,3-dicarbonyl compounds via catalytic disproportionation of TEMPO by photoredox catalysis. Chem Lett 41:999–1001

    Google Scholar 

  128. Im H, Kang D, Choi S, Shin S, Hong S (2018) Visible-light-induced C–O bond formation for the construction of five- and six-membered cyclic ethers and lactones. Org Lett 20:7437–7441

    Google Scholar 

  129. Gonçalves CR, Lemmerer M, Teskey CJ, Adler P, Kaiser D, Maryasin B, González L, Maulide N (2019) Unified approach to the chemoselective α-functionalization of amides with heteroatom nucleophiles. J Am Chem Soc 141:18437–18443

    Google Scholar 

Download references

Acknowledgments

The authors thank CSIR (CSMCRI project no. MLP 0028) and DST (Grant no. DST/INSPIRE/04/2015/002248) for financial support. CSIR-CSMCRI Communication no. 10/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukalyan Bhadra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A., Gundekari, S., Bhadra, S. (2021). C(sp3)–H Bond Hetero-functionalization of Aliphatic Carboxylic Acid Equivalents Enabled by Transition Metals. In: Pant, K.K., Gupta, S.K., Ahmad, E. (eds) Catalysis for Clean Energy and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-030-65017-9_13

Download citation

Publish with us

Policies and ethics