Skip to main content

Chapter 6 Intraspecific Variation in Plant Responses to Atmospheric CO2, Temperature, and Water Availability

  • Chapter
  • First Online:
Photosynthesis, Respiration, and Climate Change

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 48))

Abstract

In this chapter we compile data on intraspecific variation in plant reproductive, growth, and physiological responses to changes in atmospheric CO2, temperature , and water availability. In total, we extracted data from 71 studies comprising a total of 79 species representing all major growth forms, functional groups, and biomes. Cumulatively, these studies examined responses to environmental change in 1154 genotypes. We used these data to examine: (1) the extent to which natural populations and genotypes within species vary in their response to increasing CO2, warmer temperatures, and reduced water availability, and (2) whether intraspecific variation in these responses differs among growth forms, functional groups, biomes, and the phenotypic trait. In general, genotypes or populations of many species showed a wide range of responses to elevated CO2, warming, and reduced water availability. However, probability values (p-values) for genotype-by-environment interaction terms (usually from analysis of variance) varied from <0.0001 to >0.90 depending upon the study design (and species), the environmental factor, and the scale of the trait. More studies reported significant intraspecific variation in plant responses to increasing temperature and decreasing water availability than intraspecific variation in plant responses to increasing CO2. Thus, warmer and drier conditions may be more likely to result in evolutionary changes within species than increasing CO2 alone. We also find that intraspecific variation in plant responses to environmental change is generally higher for reproductive and growth traits than for leaf-scale physiological traits. Even so, moderate intraspecific variation in physiological responses could result in substantial variation in growth and reproductive responses among genotypes. We conclude by discussing our understanding of genetic features that influence genotype-by-environment interactions. We go on to identify future research directions for advancing our understanding of the causes and consequences of intraspecific variation in plant responses to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahrens CW, Byrne M, Rymer PD (2019) Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Mol Ecol 28:2502–2516

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S (2008) Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl 1:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 7:258–266

    Article  CAS  Google Scholar 

  • Arend M, Kuster T, Günthardt-Goerg MS, Dobbertin M (2011) Provenance-specific growth responses to drought and air warming in three European oak species (Quercus robur, Q. petraea and Q. pubescens). Tree Physiol 31:287–297

    Article  PubMed  Google Scholar 

  • Aspinwall MJ, Drake JE, Campany C, Varhammar A, Ghannoum O, Tissue DT, Reich PB, Tjoelker MG (2016) Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. New Phytol 212:354–367

    Article  CAS  PubMed  Google Scholar 

  • Aspinwall MJ, Varhammar A, Blackman CJ, Tjoelker MG, Ahrens C, Byrne M, Tissue DT, Rymer PD (2017a) Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla. Tree Physiol 37:1095–1112

    Article  CAS  PubMed  Google Scholar 

  • Aspinwall MJ, Jacob VK, Blackman CJ, Smith RA, Tjoelker MG, Tissue DT (2017b) The temperature response of leaf dark respiration in 15 provenances of Eucalyptus grandis grown in ambient and elevated CO2. Funct Plant Biol 44:1075–1086

    Article  PubMed  Google Scholar 

  • Aspinwall MJ, Fay PA, Hawkes CV, Lowry DB, Khasanova A, Whitaker BK, Bonnette J, …, Juenger TE (2017c) Intraspecific variation in precipitation responses of a widespread C4 grass depend on site water limitation. J Plant Ecol 10:310–321

    Google Scholar 

  • Aspinwall MJ, Blackman CJ, Resco de Dios V, Busch FA, Rymer PD, Loik ME, Drake JE, …, Tissue DT (2018) Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis. Tree Physiol 38:1286–1301

    Google Scholar 

  • Aspinwall MJ, Pfautsch S, Tjoelker MG, Varhammar A, Possell M, Drake JE, Reich PB, …, Dennison S (2019) Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Glob Chang Biol 25:1665–1684

    Google Scholar 

  • Atkin OK, Tjoelker MG (2003) Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci 8:343–351

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bonisch G, …, Zaragoza-Castells (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636

    Google Scholar 

  • Avolio ML, Smith MD (2013) Mechanisms of selection: phenotypic differences among genotypes explain patterns of selection in a dominant species. Ecology 94:953–965

    Article  Google Scholar 

  • Bansal S, Harrington CA, Gould PJ, St. Clair JB (2015) Climate-related genetic variation in drought-resistance of Douglas-fir (Pseudotsuga menziesii). Glob Chang Biol 21:947–958

    Article  PubMed  Google Scholar 

  • Baquedano FJ, Valladares F, Castillo FJ (2008) Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. Eur J For Res 127:495–506

    Article  Google Scholar 

  • Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso J (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177:724–732

    Article  CAS  Google Scholar 

  • Bazzaz FA, Jasienski M, Thomas SC, Wayne P (1995) Microevolutionary responses to experimental populations of plants to CO2-enriched environments: parallel results from two model systems. Proc Natl Acad Sci 92:8161–8165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benomar L, Lamhamedi MS, Rainville A, Beaulieu J, Bousquet J, Margolis HA (2016) Genetic adaptation vs. ecophysiological plasticity of photosynthetic-related traits in young Picea glauca trees along a regional climatic gradient. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.00048

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Bigras FJ, Bertrand A (2006) Responses of Picea mariana to elevated CO2 concentration during growth, cold hardening and dehardening: phenology, cold tolerance, photosynthesis and growth. Tree Physiol 26:875–888

    Article  CAS  PubMed  Google Scholar 

  • Blackman CJ, Aspinwall MJ, Resco de Dios V, Smith R, Tissue DT (2016) Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2. Funct Ecol 30:1491–1500

    Article  Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Adv Genet 13:115–155

    Article  Google Scholar 

  • Bresson CC, Vitasse Y, Kremer A, Delzon S (2011) To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech? Tree Physiol 31:1164–1174

    Article  CAS  PubMed  Google Scholar 

  • Bruhn D, Wiskich JT, Atkin OK (2007) Contrasting responses by respiration to elevated CO2 in intact tissue and isolated mitochondria. Funct Plant Biol 34:112–117

    Article  CAS  PubMed  Google Scholar 

  • Cantin D, Tremblay MF, Lechowicz MJ, Potvin C (1996) Effects of CO2 enrichment, elevated temperature, and nitrogen availability on the growth and gas exchange of different families of jack pine seedlings. Can J For Res 27:510–520

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, …, Wehner M (2013) Long-term climate change: projections commitments and irreversibility. In: Stocker TF, Qin D, Plattner M, Tignor SK, Allen J, Boschung A, Nauels Y, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York/Cambridge

    Google Scholar 

  • Cregg BM (1994) Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought. Tree Physiol 14:883–898

    Article  PubMed  Google Scholar 

  • Crous KY, Drake JE, Aspinwall MJ, Sharwood RE, Tjoelker MG, Ghannoum O (2018) Photosynthetic capacity and leaf nitrogen decline along a controlled climate gradient in provenances of two widely distributed Eucalyptus species. Glob Chang Biol 24:4626–4644

    Article  PubMed  Google Scholar 

  • Cseke LJ, Tsai C-J, Rogers A, Nelson MP, White HL, Karnosky DF, Podila GP (2009) Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytol 182:891–911

    Article  CAS  PubMed  Google Scholar 

  • Curtis PS, Snow AA, Miller AS (1994) Genotype-specific effects of elevated CO2 on fecundity in wild radish (Raphanus raphinistrum). Oecologia 97:100–105

    Article  PubMed  Google Scholar 

  • Des Marais DL, Hernandez KM, Juenger TE (2013) Genotype-by-environment interaction and plasticity: exploring genomic responses of plants to the abiotic environment. Annu Rev Ecol Evol Syst 44:5–29

    Article  Google Scholar 

  • Drake BG, González-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Phsiol Plant Mol Biol 48:609–639

    Article  CAS  Google Scholar 

  • Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB, Smith RA, Crous KY, …, Tjoelker MG (2015) The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Glob Chang Biol 21: 459–472

    Google Scholar 

  • Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, …, Tissue DT (2017) Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agric For Meteorol 247: 454–466

    Google Scholar 

  • Dusenge ME, Duarte AG, Way DA (2018) Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol 221:32–49

    Article  PubMed  CAS  Google Scholar 

  • El-Din El Assal S, Alonso-Blanco C, Peeters AJ, Raz V, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  PubMed  Google Scholar 

  • Ensslin A, Fischer M (2015) Variation in life-history traits and their plasticities to elevational transplantation among seed families suggests potential for adaptative evolution of 15 tropical plant species to climate change. Am J Bot 102:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Feeley KJ, Silman MR (2009) Extinction risk of Amazonian plant species. Proc Natl Acad Sci 106:12382–12387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol Appl 7:123–139

    Article  PubMed  Google Scholar 

  • Frei ER, Ghazoul J, Pluess AR (2014) Plastic responses to elevated temperature in low and high elevation populations of three grassland species. PLoS One 9:e98677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Germino MJ, Moser AM, Sands AR (2019) Adaptive variation, including local adaptation, requires decades to become evident in common gardens. Ecol Appl 29:e01842

    Article  PubMed  Google Scholar 

  • Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407

    Article  Google Scholar 

  • Gianoli E (2004) Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convuolvulaceae) differing in environmental heterogeneity. Int J Plant Sci 165:825–832

    Article  Google Scholar 

  • Gianoli E, González-Teuber M (2005) Environmental heterogeneity and population differentiation in plasticity to drought in Convolvulus chilensis (Convolvulaceae). Evol Ecol 19:603–613

    Article  Google Scholar 

  • Gimeno TE, Pías B, Lemos-Filho VF (2009) Plasticity and stress tolerance override local adaptation in the responses of Mediterranean holm oak seedlings to drought and cold. Tree Physiol 29:87–98

    Article  PubMed  Google Scholar 

  • Grant OM, Incoll LD, McNeilly T (2005) Variation in growth responses to availability of water in Cistus albidus populations from different habitats. Funct Plant Biol 32:817–829

    Article  PubMed  Google Scholar 

  • Griffin KL, Anderson OR, Gastrich MD, Lewis JD, Lin G, Schuster W, Seemann JR, …, Whitehead D (2001a) Plant growth in elevated CO2 alters mitochondrial number and chloroplast fine structure. Proc Natl Acad Sci USA 98:2473–2478

    Google Scholar 

  • Griffin KL, Tissue DT, Turnbull MH, Schuster W, Whitehead D (2001b) Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years. Funct Ecol 15:497–505

    Article  Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Article  Google Scholar 

  • Guarnaschelli AB, Lemcoff JH, Prystupa P, Basci SO (2003) Responses to drought preconditioning in Eucalyptus globulus Labill. Provenances. Trees 17:501–509

    Article  Google Scholar 

  • Gujas B, Alonso-Blanco C, Hardtke C (2012) Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil. Curr Biol 22:1962–1968

    Article  CAS  PubMed  Google Scholar 

  • Gunderson CA, Norby RJ, Wullschleger SD (2000) Acclimation of photosynthesis and respiration to simulated climatic warming in northern and southern populations of Acer saccharum: laboratory and field evidence. Tree Physiol 20:87–96

    Article  PubMed  Google Scholar 

  • Hansen J, Sato M, Ruedy R (2012) Perception of climate change. Proc Natl Acad Sci U S A 109:14726–14727

    Article  CAS  Google Scholar 

  • Hartman JC, Nippert JB, Springer CJ (2012) Ecotypic responses of switchgrass to altered precipitation. Funct Plant Biol 39:126–136

    Article  PubMed  Google Scholar 

  • He M, Dijkstra FA (2014) Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol 204:924–931

    Article  CAS  PubMed  Google Scholar 

  • Heschel MS, Sultan SE, Glover S, Sloan D (2004) Population differentiation and plastic responses to drought stress in the generalist annual Polygonum persicaria. Int J Plant Sci 165:817–824

    Article  Google Scholar 

  • Heskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Egerton JJG, …, Atkin OK (2016) Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proc Nat Acad Sci USA 113:3832–3837

    Google Scholar 

  • Higgins SI, Clark JS, Nathan R, Hovestadt T, Schurr F, Fragoso JMV, Aguiar MR, …, Lavorel S (2003) Forecasting plant migration rates: managing uncertainty for risk assessment. J Ecol 91:341–347

    Google Scholar 

  • Hoffmann AA, Srgo CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Huang G, Rymer PD, Duan H, Smith RA, Tissue DT (2015) Elevated temperature is more effective than elevated [CO2] in exposing genotypic variation in Telopea speciosissima growth plasticity: implications for woody plant populations under climate change. Glob Chang Biol 21:3800–3813

    Article  PubMed  Google Scholar 

  • Jenkins Klus D, Kalisz S, Curtis PS, Teeri JA, Tonsor SJ (2001) Family- and population-level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae). Am J Bot 88:1080–1087

    Article  CAS  PubMed  Google Scholar 

  • Jump AS, Penuelas J, Rico L, Ramallo E, Estiarte M, Martinez-Izquierdo JA, Lloret F (2008) Simulated climate change provokes rapid genetic change in the Mediterranean shrub Fumana thymifolia. Glob Chang Biol 14:637–643

    Article  Google Scholar 

  • Kahl SM, Lenhard M, Joshi J (2019) Compensatory mechanisms to climate change in the widely distributed species Silene vulgaris. J Ecol. https://doi.org/10.1111/1365-2745.13133

  • Kalladan R, Lasky JR, Sharma S, Kumar MN, Juenger TE, Des Marais DL, Verslues PE (2019) Natural variation in 9-cis-epoxycartenoid dioxygenase 3 and ABA accumulation. Plant Physiol. (In press)

    Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Kerr KL, Meinzer FC, McCulloh KA, Woodruff DR, Marias DE (2015) Expression of functional traits during seedling establishment in two populations of Pinus ponderosa from contrasting climates. Tree Physiol 35:535–548

    Article  PubMed  Google Scholar 

  • Kesari R, Lasky J, Villamor JG, Des Marais D, Chen Y-J C, Liu TW, Lin W, …, Verslues P (2012) Intron mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proc Natl Acad Sci 109:9197–9202

    Google Scholar 

  • Kubiske ME, Pregitzer KS, Zak DR, Mikan CJ (1998) Growth and C allocation of Populus tremuloides genotypes in response to atmospheric CO2 and soil N availability. New Phytol 140:251–260

    Article  PubMed  Google Scholar 

  • Kumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, …, Way DA (2019) Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytol 222:768–784

    Google Scholar 

  • Laitinen RAE, Nikoloski Z (2018) Genetic basis of plasticity in plants. J Exp Bot 70:739–745

    Article  CAS  Google Scholar 

  • Lamy J-B, Delzon S, Bouche PS, Alia R, Vendramin GG, Cochard H, Plomion C (2013) Limited genetic variability and phenotypic plasticity detected for cavitation resistance in a Mediterranean pine. New Phytol 201:874–886

    Article  PubMed  Google Scholar 

  • Lau JA, Shaw RG, Reich PB, Shaw FH, Tiffin P (2007) Strong ecological but weak evolutionary effects of elevated CO2 on a recombinant inbred population of Arabidopsis thaliana. New Phytol 175:351–362

    Article  CAS  PubMed  Google Scholar 

  • Lázaro-Nogal A, Matesanz S, Godoy A, Pérez-Trautman F, Gianoli E, Valladares F (2015) Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J Ecol 103:338–350

    Article  Google Scholar 

  • Lee TD, Reich PB, Bolstad PV (2005) Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Funct Ecol 19:640–647

    Article  Google Scholar 

  • Lei Y, Yin C, Li C (2006) Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    Article  CAS  Google Scholar 

  • Li J, Guan W, Yu F-H, van Kleunen M (2016) Latitudinal and longitudinal clines of phenotypic plasticity in the invasive herb Solidago canadensis in China. Oecologia 182:755–764

    Article  PubMed  Google Scholar 

  • Li Z, Jiang D, He Y (2018) FRIGIDA establishes a local chromosome environment for FLOWERING LOCUS C mRNA production. Nat Plant 4:836–846

    Article  CAS  Google Scholar 

  • Loik ME, Resco de Dios V, Smith R, Tissue DT (2017) Relationships between climate of origin and photosynthetic responses to an episodic heatwave depend on growth CO2 concentration for Eucalyptus camaldulensis var. camaldulensis. Funct Plant Biol 44:1053–1062

    Article  CAS  PubMed  Google Scholar 

  • López R, Rodríguez-Calcerrada J, Gil L (2009) Physiological and morphological response to water deficit in seedlings of five provenances of Pinus canariensis: potential to detect variation in drought-tolerance. Trees 23:509–519

    Article  Google Scholar 

  • Loreti J, Oesterheld M (1996) Intraspecific variation in the resistance to flooding and drought in populations of Paspalum dilatatum from different topographic positions. Oecologia 108:279–284

    Article  CAS  PubMed  Google Scholar 

  • Lovell JT, Jenkins J, Lowry DB, Mamidi S, Sreedasyam A, Weng X, Barry K, …, Juenger TE (2018) The genomic landscape of molecular responses to drought stress in Panicum hallii. Nat Commun 9:5213

    Google Scholar 

  • Lüscher A, Nösberger J (1997) Interspecific and intraspecific variability in the response of grasses and legumes to free air CO2 enrichment. Acta Oecol 18:269–275

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Maher T, Mirzaei M, Pascovici D, Wright IJ, Haynes PA, Gallagher RV (2019) Evidence from the proteome for local adaptation to extreme heat in a widespread tree species. Funct Ecol 33:436–446

    Article  Google Scholar 

  • Maherali H, Caruso CM, Sherrard ME, Latta RG (2010) Adaptive value and costs of physiological plasticity to soil moisture limitation in recombinant inbred lines of Avena barbata. Am Nat 175:211–224

    Article  PubMed  Google Scholar 

  • Mamet SD, Brown CD, Trant AJ, Laroque CP (2019) Shifting global Larix distributions: northern expansion and southern retraction as species respond to changing climate. J Biogeogr 46:30–44

    Article  Google Scholar 

  • McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M (2014) Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant Cell Environ 37:1440–1451

    Article  CAS  PubMed  Google Scholar 

  • McKeirnan AB, Potts BM, Brodribb TJ, Hovenden MJ, Davies NW, McAdam SAM, Ross JJ, …, O’Reilly-Wapstra JM (2015) Responses to mild water deficit and rewatering differ among secondary metabolites but are similar among provenances within Eucalyptus species. Tree Physiol 36:133–147

    Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, …, Jarvis PG (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264

    Google Scholar 

  • Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872

    Article  CAS  PubMed  Google Scholar 

  • Mohan JE, Clark JS, Schlesinger WH (2004) Genetic variation in germination, growth, and survivorship of red maple in response to subambient through elevated atmospheric CO2. Glob Chang Biol 10:233–247

    Article  Google Scholar 

  • Molina-Montenegro MA, Palma-Rojas C, Alcayaga-Olivares Y, Oses R, Corcuera LJ, Cavieres LA, Gianoli E (2013) Ecophysiological plasticity and local differentiation help explain the invasion success of Taraxacum officinale (dandelion) in South America. Ecography 36:718–730

    Google Scholar 

  • Mycroft EE, Zhang J, Adams G, Reekie E (2009) Elevated CO2 will not select for enhanced growth in white spruce despite genotypic variation in response. Basic Appl Ecol 10:349–357

    Article  Google Scholar 

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, …, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692

    Google Scholar 

  • Norton LR, Firbank LG, Gray AJ, Watkinson AR (1999) Responses to elevated temperature and CO2 in the perennial grass Agrostis curtisii in relation to population origin. Funct Ecol 13:29–37

    Article  Google Scholar 

  • O’Keefe K, Tomeo N, Nippert JB, Springer CJ (2013) Population origin and genome size do not impact Panicum virgatum (switchgrass) responses to variable precipitation. Ecosphere 4:37. https://doi.org/10.1890/ES12-00339.1

    Article  Google Scholar 

  • Oleksyn J, Modrzynski J, Tjoelker MG, Zytkowiak R, Reich PB, Karolewski P (1998) Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol 12:573–590

    Article  Google Scholar 

  • Paccard A, Fruleux A, Willi Y (2014) Latitudinal trait variation and responses to drought in Arabidopsis lyrata. Oecologia 175:577–587

    Article  PubMed  Google Scholar 

  • Polley HW, Tischler CR, Johnson HB, Pennington RE (1999) Growth, water relations, and survival of drought-exposed seedlings from six maternal families of honey mesquite (Prosopis glandulosa): responses to CO2 enrichment. Tree Physiol 19:359–366

    Article  PubMed  Google Scholar 

  • Pratt JD, Mooney KA (2013) Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Glob Chang Biol 19:2454–2466

    Article  PubMed  Google Scholar 

  • Ramírez-Valiente JA, Sáchez-Gómez D, Aranda I, Valladares F (2010) Phenotypic plasticity and local adaptation in leaf ecophysiological traits of 13 contrasting cork oak populations under different water availabilities. Tree Physiol 30:618–627

    Article  PubMed  Google Scholar 

  • Riikonen J, Lindsberg M-M, Holopainen T, Oksanen E, Lappi J, Peltonen P, Vapaavuori E (2004) Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone. Tree Physiol 24:1227–1237

    Article  CAS  PubMed  Google Scholar 

  • Riikonen J, Holopainen T, Oksanen E, Vapaavuori E (2005) Leaf photosynthetic characteristics of silver birch during three years of exposure to elevated concentrations of CO2 and O3 in the field. Tree Physiol 25:621–632

    Article  CAS  PubMed  Google Scholar 

  • Rose L, Leuschner C, Köckemann B, Buschmann H (2009) Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur J For Res 128:335–343

    Article  Google Scholar 

  • Roumet C, Laurent G, Roy J (1999) Leaf structure and chemical composition as affected by elevated CO2: genotypic responses of two perennial grasses. New Phytol 143:73–81

    Article  CAS  Google Scholar 

  • Roumet C, Laurent G, Canivenc G, Roy J (2002) Genotypic variation in the response of two perennial grass species to elevated carbon dioxide. Oecologia 133:342–348

    Article  PubMed  Google Scholar 

  • Sherrard ME, Maherali H, Latta RG (2009) Water stress alters the genetic architecture of functional traits associated with drought adaptation in Avena barbata. Evolution 63:702–715

    Article  CAS  PubMed  Google Scholar 

  • Silim SN, Ryan N, Kubien DS (2010) Temperature responses of photosynthesis and respiration in Populus balsamifera L.: acclimation versus adaptation. Photosynth Res 104:19–30

    Article  CAS  PubMed  Google Scholar 

  • Sletvold N, Ã…gren J (2012) Variation in tolerance to drought among Scandinavian populations of Arabidopsis lyrata. Evol Ecol 26:559–577

    Article  Google Scholar 

  • Slot M, Kitajima K (2015) General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia 177:885–900

    Article  PubMed  Google Scholar 

  • Smith EN, Kruglyak L (2008) Gene-environment interaction in yeast expression. PLoS Biol 6:e83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spinnler D, Egli P, Körner C (2003) Provenance effects and allometry in beech and spruce under elevated CO2 and nitrogen on two different forest soils. Basic Appl Ecol 4:467–478

    Article  Google Scholar 

  • Springate DA, Scarcelli N, Rowntree J, Kover PX (2011) Correlated response in plasticity to selection for early flowering in Arabidopsis thaliana. J Evol Biol 24:2280–2288

    Article  CAS  PubMed  Google Scholar 

  • Springate DA, Kover PX (2014) Plant responses to elevated temperatures: a field study on phenological sensitivity and fitness responses to simulated climate warming. Glob Chang Biol 20:456–465

    Article  PubMed  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, …, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    Google Scholar 

  • Thuiller W, Albert C, Araujo MB, Berry PM, Cabeza M, Guisan A, Hickler T, …, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Perspect Plant Ecol Evol Syst 9:137–152

    Google Scholar 

  • Tissue DT, Griffin KL, Ball JT (1999) Photosynthetic adjustment in fieldgrown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiol 19:221–228

    Article  PubMed  Google Scholar 

  • Tjoelker MG, Oleksyn J, Lorenc-Plucinska G, Reich PB (2009) Acclimation of respiratory temperature responses in northern and southern populations of Pinus banksiana. New Phytol 181:218–229

    Article  CAS  PubMed  Google Scholar 

  • Tonsor SJ, Scheiner SM (2007) Plastic trait integration across a CO2 gradient in Arabidopsis thaliana. Am Nat 169:119–140

    Article  Google Scholar 

  • Townend J (1993) Effects of elevated carbon dioxide and drought on the growth and physiology of clonal Sitka spruce plants (Picea sitchensis (Bong.) Carr.). Tree Physiol 13:389–399

    Article  CAS  PubMed  Google Scholar 

  • Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Valladares F, Matesanz S, Guilhaumon F, Araujo MG, Balaguer L, Benito-Garzon M, Cornwell W, …, Zavala MA (2014) The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol Lett 17:1351–1364

    Google Scholar 

  • Volaire F (1995) Growth, carbohydrate reserves and drought survival strategies of contrasting Dactylis glomerata populations in a Mediterranean environment. J Appl Ecol 32:56–66

    Article  Google Scholar 

  • Wadgymar SM, Lowry DB, Gould BA, Byron CN, Mactavish RM, Anderson JT (2017) Identifying targets and agents of selection: innovative methods to evaluate the processes that contribute to local adaptation. Methods Ecol Evol 8:738–749

    Article  Google Scholar 

  • Wang X, Curtis PS, Pregitzer KS, Zak DR (2000) Genotypic variation in physiological and growth responses of Populus tremuloides to elevated atmospheric CO2 concentration. Tree Physiol 20:1019–1028

    Article  CAS  PubMed  Google Scholar 

  • Ward JK, Strain BR (1997) Effects of low and elevated CO2 partial pressure on growth and reproduction of Arabidopsis thaliana from different elevations. Plant Cell Environ 20:254–260

    Article  Google Scholar 

  • Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol 30:669–688

    Article  PubMed  Google Scholar 

  • Way DA, Yamori W (2014) Thermal acclimation of photosynthesis: on the importance of adjusting our definitions and accounting for thermal acclimation of respiration. Photosynth Res 119:89–100

    Article  CAS  PubMed  Google Scholar 

  • Weih M, Bonosi L, Ghelardini L, Ronnberg-Wastljung AC (2011) Optimizing nitrogen economy under drought: increased leaf nitrogen is an acclimation to water stress in willow (Salix spp.). Ann Bot 108:1347–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston DJ, Bauerle WL (2007) Inhibition and acclimation of C3 photosynthesis to moderate heat: a perspective from thermally contrasting genotypes of Acer rubrum (red maple). Tree Physiol 27:1083–1092

    Article  CAS  PubMed  Google Scholar 

  • Wulff RD, Alexander HM (1985) Intraspecific variation in the response to CO2 enrichment in seeds and seedlings of Plantago lanceolata L. Oecologia 66:458–460

    Article  PubMed  Google Scholar 

  • Wullschleger SD, Norby RJ, Gunderson CA (1992) Growth and maintenance respiration in leaves of Liriodendron tulipifera L. exposed to long-term carbon dioxide enrichment in the field. New Phytol 121:515–523

    Article  CAS  Google Scholar 

  • Zhu W, Ausin I, Seleznev A, Mendez-Vigo B, Pico FX, Sureshkumar S, Sundaramoorthi V, …, Balasubramanian S (2015) Natural variation identified ICARUS1, a universal gene required for cell proliferation and growth at high temperatures in Arabidopsis thaliana. PLoS Genet 11:e1005085

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Aspinwall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aspinwall, M.J., Juenger, T.E., Rymer, P.D., Rodgers, A., Tissue, D.T. (2021). Chapter 6 Intraspecific Variation in Plant Responses to Atmospheric CO2, Temperature, and Water Availability. In: Becklin, K.M., Ward, J.K., Way, D.A. (eds) Photosynthesis, Respiration, and Climate Change . Advances in Photosynthesis and Respiration, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-64926-5_6

Download citation

Publish with us

Policies and ethics