Skip to main content

Numerical Simulation of In-flight Icing in Jet Engines

  • Living reference work entry
  • First Online:
Handbook of Numerical Simulation of In-Flight Icing
  • 84 Accesses

Abstract

This chapter deals with in-flight icing in jet engines, describing the computational procedures and icing models, icing within the rotor/stator interaction fields, supercooled large droplet (SLD) icing on rotor blades, ice shedding from the fan, ice crystals icing, and introducing a hybrid grid- and particle-based method. The models are successfully applied to actual jet engines developed by the Japan Aerospace Exploration Agency (JAXA). The results show that severe ice accretion occurs near the fan hub and that ice-shedding events can be faithfully reproduced by providing the adhesion force between the ice layer and the walls. In addition, ice crystal icing can be predicted by adequately estimating the temperature in the stator vanes. Because of the dearth of experimental icing data for jet engines, code validation is limited to two-dimensional cases. The simulation code is shown to reasonably predict the fundamental icing behavior and can thus be applied to icing problems in actual jet engines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Advisory Group for Aerospace Research and Development (AGARD) (1995) Recommended practices for the assessment of the effects of atmospheric water ingestion on the performance and operability of gas turbine engines. AGARD Advisory Report, AGARD AR-332

    Google Scholar 

  • Aliaga CN, Aubé MS, Baruzzi GS, Habashi WG (2011) FENSAP-ICE-Unsteady: unified in-flight icing simulation methodology for aircraft, rotorcraft, and jet engines. J Aircr 48(1):119–126

    Article  Google Scholar 

  • Anderson DN, Tsao JC (2005) Additional results of ice accretion scaling at SLD conditions. NASA CR-2005-213850

    Google Scholar 

  • Anderson DN, Tsao JC (2008) Ice shape scaling for aircraft in SLD conditions. NASA CR-2008-215302

    Google Scholar 

  • Aouizerate G, Charton V, Balland M, Senoner J-M, Trontin P, Laurent C, Blanchard G, Villedieu P (2018) Ice crystal trajectory calculation in a turbofan engine. AIAA Paper 2018-4130

    Google Scholar 

  • Baruzzi GS, Lagacé P, Habashi WG, Aubé MS (2007) FENSAP-ICE: a computational approach to shed-ice trajectory simulation. SAE technical paper 07ICE-34

    Google Scholar 

  • Brouwers EW (2010a) M.S. Thesis, The experimental investigation of a rotor icing model with shedding. Pennsylvania State Univ., State College, PA

    Google Scholar 

  • Brouwers EW, Palacios JL, Smith EC, Peterson AA (2010b) The experimental investigation of a rotor hover icing model with shedding. In: Proceedings of 66th annual forum of American Helicopter Society, vol.4, pp 2619–2635

    Google Scholar 

  • Bucknell A, McGilvray M, Gillespie RH, Jones G (2021) A thermodynamic model for ice crystal accretion in aircraft engines; EMM-C. Int J Heat Mass Transf 174:121270

    Google Scholar 

  • Das K, Hamed A, Basu D (2006) Ice shape prediction for turbofan rotating blades. AIAA paper 2006-0209

    Google Scholar 

  • Das K, Hamed A, Basu D (2007) Effect of droplet ingestion conditions on ice accretion in turbofan engines. ISABE-2007-1350

    Google Scholar 

  • Decang L, Hammond DW (2011) Heat and mass transfer for ice particle ingestion inside aero-engine. J Turbomach 133(3):1–5

    Google Scholar 

  • Fujii K, Obayashi S (1987) Practical application of improved LU-ADI Scheme for the three-dimensional Navier-Stokes computations of transonic viscous flows. AIAA paper 86-0513

    Google Scholar 

  • Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77(2):143–152

    Article  Google Scholar 

  • Gent RW, Dart NP, Cansdale JT (2000) Aircraft icing. Philos Trans R Soc London Ser A 358(1776):2873–2911

    Article  MATH  Google Scholar 

  • Han Y, Soltis J, Palacios J (2018) Engine inlet guide vane ice impact fragmentation. AIAA J 56(9):3680–3690

    Article  Google Scholar 

  • Harold E et al (2000) Ice Accretions and icing effects for modern airfoils. NASA TP2000 210031

    Google Scholar 

  • Hayashi R, Yamamoto M (2013) Numerical simulation on ice accretion phenomena in rotor-stator interaction field. In: Proceedings of ASME Turbo Expo 2013, ASME2013–95448

    Google Scholar 

  • Hayashi R, Kawakami K, Suzuki M, Yamamoto M, Shishido S, Murooka T, Miyagawa H (2011) Numerical simulation of icing phenomena in fan rotor-stator interaction field. In: Proceedings of 11th International Gas Turbine Congress., IGTC2011-ABS-0241

    Google Scholar 

  • Hinze JO (1955) Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AICHE J 1(3):289–295

    Article  Google Scholar 

  • Hospers J, Hoeijmakers H (2011) Numerical simulation of SLD ice accretions. SAE technical paper2011-38-0071

    Google Scholar 

  • Isobe K, Suzuki M, Yamamoto M (2013) Numerical simulation of ice accretion on the rotor blade of a jet engine considering splash and bounce. SAE technical paper 2013-01-2209

    Google Scholar 

  • Iwago M, Fukudome K, Mamori H, Fukushima N, Yamamoto M (2020) Fundamental investigation to predict ice crystal icing in jet engine. In: Suryan A, Doh DH, Yaga M, Zhang G (eds) Recent Asian research on thermal and fluid sciences. Lecture notes in mechanical engineering. Springer, Singapore, pp 305–318

    Chapter  Google Scholar 

  • Kato M, Launder BE (1993) The modeling of turbulent flow around stationary and vibrating square cylinder. In: Proceedings, 8th Symposium on Turbulent Shear Flows, pp 10-4-1–10-4-6

    Google Scholar 

  • Koshizuka S (1995) A particle method for incompressible viscous flow with fluid fragmentation. J Comut Fluid Dyn 4:29–46

    Google Scholar 

  • Kundu R, Prasad JVR, Saxena S, Singh R, Breeze-Stringfellow A, Nakano T (2014) Analysis of stall onset in a multistage axial flow compressor in response to engine icing. AIAA paper 2014-3841

    Google Scholar 

  • Mason JG, Strapp JW, Chow P (2006) The ice particle threat to engines in flight. In: Proceedings of 44th aerospace science meeting and exhibit. AIAA paper 2006-206-739

    Google Scholar 

  • Menter FR (1993) Zonal Two Equation k/omega, Turbulence Models for Aerodynamic Flows. AIAA paper 1993–2906

    Google Scholar 

  • Messinger BL (1953) Equilibrium Temperature of an unheated icing surface as a function of airspeed. J Aeronautical Sci 20(1):29–42

    Article  Google Scholar 

  • Murooka T, Shishido S, Hiramoto R, Minoya T (2011) Surface coating effect on protection of icing for axial fan blade. SAE technical paper 2011-38-0009

    Google Scholar 

  • Myers TG (2001) Extension to the Messinger model for aircraft icing. AIAA J 39(2):211

    Article  Google Scholar 

  • Nilamdeen S, Habashi WG (2011) A multiphase approach for simulating ice crystals ingestion in jet engines. AIAA J Propuls Power 27(5):959–969

    Article  Google Scholar 

  • Nilamdeen S, Rao VS, Switchenko D, Selvanayagam J, Ozcer I (2019) Numerical simulation of ice crystal accretion inside an engine core stator. SAE technical paper 2019-01-2017

    Google Scholar 

  • Ona K, Toda K, Yamamoto M (2000) Numerical simulation of ice accretion in jet engine inlet. In: Proceedings of 8th international symposium on transport phenomena and dynamics of rotating machinery, vol I, pp 57–63

    Google Scholar 

  • Oochi M, Koshizuka S, Sakai M (2010) Explicit MPS algorism for free surface flow analysis. Trans Jpn Soc Comput Eng Sci 2010:1–8. (in Japanese)

    Google Scholar 

  • Ozgen S, Canıbek M (2009) Ice accretion simulation on multi-element airfoils using extended Messinger model. Heat Mass Transf 45:305–322

    Article  MATH  Google Scholar 

  • Papadakis M, Yeong H, Suares IG (2007) Simulation of ice shedding from a business jet aircraft. In: Proceeding of 45th AIAA aerospace sciences meeting and exhibit

    Google Scholar 

  • Presteau X, Montreuil E, Chazottes A, Vancassel X (2009) Experimental and numerical study of scallop ice on swept cylinder. In: Proceeding of 1st AIAA atmospheric and space environments conference, AIAA paper 2009–4124

    Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation: second revised and enlarged edition with an introduction to cloud chemistry and cloud electricity. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Roe PL (1986) Characteristics-based schemes for the Euler equations. Annu Rev Fluid Mech 18:337–365

    Article  MathSciNet  Google Scholar 

  • Sakai T, Yamamoto M, Mizuta I (2010) Numerical prediction of ice accretion phenomena on FEGV -effect of operating condition. J Gas Turbine Soc Japan 38(3):187–193. (in Japanese)

    Google Scholar 

  • Schiller L, Naumann A (1935) A drag coefficient correlation. Z Ver Deutsch 77:318–320

    Google Scholar 

  • Senoner JM, Trontin P, Reitter L, Karpen N, Schremb M, Vargas M, Villedieu P (2022) Ice particle impact on solid walls: size modeling of reemitted fragments. Int J Impact Eng 169:104322

    Article  Google Scholar 

  • Shima E (1997) A simple implicit scheme for structured unstructured CFD. In: Proceedings of the 29th fluid dynamic conference, pp 325–328

    Google Scholar 

  • Soltis J, Palacios J, Eden T, Wolfe D (2015) Ice adhesion mechanisms of erosion-resistant coatings. AIAA J 53(7):1825–1835

    Article  Google Scholar 

  • Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA-1992-439

    Google Scholar 

  • Struk PM, Broeren AP, Tsao JC, Vargas M, Wright WB (2011) Fundamental ice crystal accretion physics studies. SAE technical paper 2011-38-0018

    Google Scholar 

  • Toba D, Fukudome K, Mamori H, Fukushima N, Yamamoto M (2020) Proposal of novel icing simulation using a hybrid grid- and particle-based method. J Mech 36(5):1–10

    Article  Google Scholar 

  • Trujillo MF, Mathews WS (1999) Modeling and experiment of impingement and atomization of a liquid spray on a wall. Int J Eng 1:87–105

    Google Scholar 

  • Veillard X, Aliaga C, Habashi WG, (2007) FENSAP-ICE modeling of the ice particle threat to engines in flight. SAE technical paper 2007-01-3323

    Google Scholar 

  • Veillard X, Habashi WG, Aubé MS, Baruzzi GS (2011) FENSAP-TURBO: icing simulation in multistage jet engines. AIAA J Propuls Power 27(6):1231–1237

    Article  Google Scholar 

  • Veres JP, Jorgenson PCE, Wright WB (2011) Modeling the effects of ice accretion on the low-pressure compressor and the overall turbofan engine system performance. NASA TM-2013-217034

    Google Scholar 

  • Villedieu P, Trontin P, Chauvin R (2014) Glaciated and mixed phase ice accretion modeling using ONERA 2D icing suite. AIAA paper 2014-2199

    Google Scholar 

  • Wright WB (2005) Validation results for LEWICE 3.0. NASA CR-2005-213561

    Google Scholar 

  • Wright WB, Gent PW, Guffond D (1997) DRA/NASA/ONERA collaboration on icing research. NASA CR-202349

    Google Scholar 

  • Wright WB, Potapczuk MG, Levinson LH (2008) Comparison of LEWICE and GlennICE in SLD regime. NASA TM-215174

    Google Scholar 

  • Yamada Y, Sakai M, Mizutani S, Koshizuka S, Oochi M, Murozono K (2011) Numerical simulation of three-dimensional free-surface flows with explicit moving particle simulation method. Trans At Energy Soc Japan 10:185–193

    Article  Google Scholar 

  • Yee HC (1987) Upwind and symmetric Shock-capturing schemes. NASA TM-89464

    Google Scholar 

  • Yuki K, Yamamoto M (2014) SLD icing simulation on NACA airfoil using MPS method. In: Proceedings of 11th World Congress on Computational Mechanics, paper 245

    Google Scholar 

  • Zhu J, Tu C, Lu T, Luo Y, Zhang K, Chen X (2021) Behavior of a water droplet impacting a thin water film. Exp Fluids 62(143):1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Yamamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yamamoto, M. (2023). Numerical Simulation of In-flight Icing in Jet Engines. In: Habashi, W.G. (eds) Handbook of Numerical Simulation of In-Flight Icing. Springer, Cham. https://doi.org/10.1007/978-3-030-64725-4_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64725-4_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64725-4

  • Online ISBN: 978-3-030-64725-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics