Skip to main content

The Effect of Aspect Ratio on Torus Wake Structure

  • Conference paper
  • First Online:
Sustaining Tomorrow

Part of the book series: Springer Proceedings in Energy ((SPE))

  • 222 Accesses

Abstract

The present investigation deals with the flow behind a torus, placed normal to the flow direction in three different aspect ratios (defined as the main diameter to the cross-sectional diameter of the torus) of 2, 3 and 5 at a constant Reynolds number of 9000. The Large Eddy Simulations (LES) are carried out to model the three-dimensional flow field around the torus. Wake structure, turbulence properties and force characteristics are investigated. Three shedding frequencies are detected at the Reynolds number studied. The highest frequency is attributed to the small-scale instability of the separating shear layer, the second one is a vortex shedding frequency that increases with aspect ratio, and the lowest one is due to the pulsation of the inner shear layer that can be observable for aspect ratios of 2 and 3. The torus has a blockage effect on the flow which is dependent on the center hole size. For the higher aspect ratio, the flow structure develops quickly, the wake flow is influenced by both inner and outer shear layers, thus forming the regular vortex ring patterns. For the lower aspect ratios, the flow pattern is mainly governed by the interaction of the outer shear layers. The results align well with documented experiments in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Padewska-Jurczak, P. Szczepaniak, Z. Bulinski, Numerical determination of wind forces acting on structural elements in the shape of a curved pipe. Wind Struct. 30(1), 15–27 (2020)

    Google Scholar 

  2. C.J. Pennycuick, The soaring flight of vultures. Sci. Am. 229(6), 102–109 (1973)

    Article  Google Scholar 

  3. G.J. Sheard, M.C. Thompson, K. Hourigan, From spheres to circular cylinder: the stability and flow structures of bluff ring wakes. J. Fluid Mech. 492, 147–180 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Horowitz, C.H. Williamson, The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres. J. Fluid Mech. 651, 251–294 (2010)

    Article  MATH  Google Scholar 

  5. M. Ozgoren, Flow structure in the downstream of square and circular cylinders. Flow Meas. Instrum. 17(4), 225–235 (2006)

    Article  Google Scholar 

  6. K. Liu, J.D. Deng, M. Mei, Experimental study on the confined flow over a circular cylinder with a splitter plate. Flow Meas. Instrum. 51, 95–104 (2016)

    Article  Google Scholar 

  7. L.M. Bergstrom, Thermodynamics and bending energetic of torus like micelles. J. Colloid Interface Sci. 327(1), 191–197 (2008)

    Article  Google Scholar 

  8. F. Springer, E. Carretier, D. Veyret, P. Moulin, Developing lengths in woven and helical tubes with dean vortices flows. Eng. Appl. Comput. Fluid Mech. 3(1), 123–134 (2009)

    Google Scholar 

  9. A.R. Vasel-Be-Hagh, R. Carriveau, D.S.-K. Ting, A balloon bursting underwater. J. Fluid Mech. 769, 522–540 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Yan, R. Carriveau, D.S.-K. Ting, On laminar to turbulent buoyant vortex ring regime in terms of Reynolds number, Bond number, and Weber number. J. Fluids Eng. 140(5), 054502(1–5) (2018)

    Google Scholar 

  11. A. Roshko, On the Development of the Turbulent WAKES from VORTEX Street (National Advisory Committee for Aeronautics, Washington, D.C., 1953), p. 2913

    Google Scholar 

  12. P.W. Bearman, M. Takamoto, Vortex shedding behind rings and discs. Fluid Dyn. Res. 3(1–4), 214–218 (1988)

    Article  Google Scholar 

  13. Y. Inoue, S. Yamashita, M. Kumuda, An experimental study on a wake behind a torus using the UVP monitor. Exp. Fluids 26(3), 197–207 (1999)

    Article  Google Scholar 

  14. Y. Wang, C. Shu, C.J. Teo, L.M. Yang, An efficient immersed boundary Lattice-Boltzman flux solver for simulation of 3D incompressible flow with comlex geometry. Comput. Fluids 124, 54–66 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Yu, Steady flow past a torus with aspect ratio less than 5. J. Fluids Struct. 48, 393–406 (2014)

    Article  Google Scholar 

  16. G.J. Sheard, M.C. Thompson, K. Hourigan, From spheres to circular cylinders: non-axisymmetric transitions in the flow past rings. J. Fluid Mech. 506, 45–78 (2004)

    Article  MATH  Google Scholar 

  17. D.R. Manson, The effect of transverse curvature on the drag and vortex shedding of elongated bludd bodies at low Reynolds number. J. Fluids Eng. 105(3), 308–318 (1983)

    Article  Google Scholar 

  18. T. Leweke, M. Provansal, The flow behind rings: bluff body wakes without end effects. J. Fluid Mech. 288, 265–310 (1995)

    Article  Google Scholar 

  19. G.J. Sheard, K. Hourigan, M.C. Thompson, Computations of the drag coefficients for low-Reynolds-number flow past rings. J. Fluid Mech. 526, 257–275 (2005)

    Article  MATH  Google Scholar 

  20. G.J. Sheard, M.C. Thompson, K. Hourigan, T. Leweke, The evolution of a subharmonic mode in a vortex street. J. Fluid Mech. 534, 23–38 (2005)

    Article  MATH  Google Scholar 

  21. P. Yu, R. Lu, W. He, L.K. Li, Steady flow around an inclined torus at low Reynolds number: lift and drag coefficient. Comput. Fluids 171, 53–64 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. T.K. Prasanth, S. Mittal, Effect of blockage on vortex-induced vibrations of a circular cylinder at low Reynolds number. J. Fluids Struct. 22(6), 865–876 (2006)

    Article  Google Scholar 

  23. M. Bisoi, M. Kumar Das, S. Roy, D.K. Patel, Large eddy simulation of three-dimensional turbulent free jet. Eur. J. Mech. B. Fluids 65, 423–439 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.R. Vasel-Be-Hagh, R. Carriveau, D.S.-K. Ting, Numerical simulation of flow past an underwater energy balloon. Comput. Fluids 88, 272–286 (2013)

    Article  Google Scholar 

  25. J.O. Hinze, Turbulence, 2nd edn. (McGraw-Hill, New York, 1975)

    Google Scholar 

  26. J. Smagorinsky, I. the basic experiment, in General Circulation Experiments with the Primitive Equations. Monthly Weather Review, Washington, D.C. pp. 99–164 (1963)

    Google Scholar 

  27. D.K. Lilly, A proposed modification of the Germano sub-grid scale closure model. Phys. Fluids A 4, 633–635 (1991)

    Article  Google Scholar 

  28. M. Germano, U. Piomelli, P. Moin, W.H. Cabot, Dynamic sub-grid scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  29. D. Mylonas, P. Sayer, The hydrodynamic flow around yacht keel based on LES and DNS. Ocean Eng. 46, 18–32 (2012)

    Article  Google Scholar 

  30. J. Shao, C. Zhang, Large eddy simulation of the flow past two side-by-side circular cylinders. Int. J. Comput. Fluid Dynamics 22(6), 393–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Vakil, S.I. Green, Two dimensional side-by-side circular cylinders at moderate Reynolds numbers. Comput. Fluids 51(1), 136–144 (2011)

    Article  MATH  Google Scholar 

  32. A. Vakil, S.I. Green, Drag and lift coefficient of inclined finite circular cylinders at moderate Reynolds numbers. Comput. Fluids 38(9), 1771–1781 (2009)

    Article  MATH  Google Scholar 

  33. P. Sagaut, Large-Eddy Simulation for Incompressible Flow—An Introduction. Scientific Computation, series edn. (Springer, Heidelberg, 2001)

    MATH  Google Scholar 

  34. J. Yang et al., On the unsteady wake dynamics behind a circular disk using fully 3D proper orthogonal decomposition. Fluid Dyn. Res. 49(1), 015510 (2017)

    Article  MathSciNet  Google Scholar 

  35. X. Tian, M. Ong, J. Yang, D. Myrhaug, Large-eddy simulations of flow normal to a circular disk at Re = 150000. Comput. Fluids 140, 422–434 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. S. Dong, G.E. Karniadakis, DNS of flow past a stationary and oscillating cylinder at Re = 10000. J. Fluids Struct. 20(4), 519–531 (2005)

    Article  Google Scholar 

  37. R. Gopalkrishnan, Vortex-Induced Forces on Oscillating Bluff Cylinders, PhD Thesis. MIT, Cambridge, MA (1993)

    Google Scholar 

  38. G.S. Constantinescu, K.D. Squires, LES and DES investigations of turbulent flow over a sphere at Re = 10000. Flow Turbul. Combust. 70(1–4), 267–298 (2003)

    Article  MATH  Google Scholar 

  39. I. Rodriguez, O. Lehmkhul, R. Borrell, A. Oliva, Flow dynamics in the turbulent wake of a sphere at sub-critical Reynolds numbers. Comput. Fluids 80, 233–243 (2012)

    Article  Google Scholar 

  40. J.C. Hunt, A.A. Wray, P. Moin, Eddies, Stream and Convergence Zones in Turbulent Flows (Stanford University, California, The United States, Center for Turbulence Research, 1988)

    Google Scholar 

  41. E. Berger, D. Scholz, M. Schumm, Coherent vortex structures in the wake of a sphere and a circular disk at rest and under forced vibrations. J. Fluids Struct. 4, 231–257 (1990)

    Article  Google Scholar 

  42. W. Zhong et al., Extraction and recognization of large-scale structures in the turbulent near wake of a circular disc. Fluid Dyn. Res. 46(2), 025507 (2014)

    Article  MATH  Google Scholar 

  43. H. Sarvgad-Moghadam, N. Nooredin, B. Ghadiri-Dehkordi, Numerical simulation of flow over two side-by-side circular cylinders. J. Hydrodynamics 23(6), 792–805 (2011)

    Article  Google Scholar 

  44. D.E. Alijure, O. Lehmkhul, I. Rodriguez, A. Oliva, Three dimensionality in the wake of the flow around a cuircular cylinder at Reynolds number 5000. Comput. Fluids 147, 102–118 (2017)

    Article  MathSciNet  Google Scholar 

  45. M.F. White, Fluid Mechanics (McGraw-Hill, New York, 2011)

    Google Scholar 

Download references

Acknowledgements

This work is made possible by the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S.-K. Ting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shams, A., Carriveau, R., Ting, D.SK. (2021). The Effect of Aspect Ratio on Torus Wake Structure. In: Ting, D.SK., Vasel-Be-Hagh, A. (eds) Sustaining Tomorrow. Springer Proceedings in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-64715-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64715-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64714-8

  • Online ISBN: 978-3-030-64715-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics