Skip to main content

Role of Bacteria in the Development of Cancer

  • Chapter
  • First Online:
Colon Cancer Diagnosis and Therapy

Abstract

Cancer is a cellular state where normal growth and survival of the cells are altered by a series of genetic changes. These changes can be induced by different factors, internal as well as external. Microbial infections are one of the major external factors and estimated to be responsible for 20% of the human cancers. These are mainly caused by viruses, but other microbes like bacteria, molds, or helminths are also reported to play an important role. Colorectal cancers (CRCs) are the third most common type of cancers in terms of number of cases. Almost 10% of all new cancer cases belong to this category. The intestine is a home for a large number of bacteria, which forms one of the most intimate relationships with humans. While mostly this relationship is considered beneficial, yet it is naïve to think that it is always that way. Recent studies showed involvement of some intestinal microbiota in cancer formations in the colon. Important mechanisms of bacterial induction of cancers are modulation and evasion of immune response, induction of chronic inflammation, activation of specific signaling pathways, and production of carcinogenic toxins or effector proteins. This present review tries to summarize the available knowledge about the relationship between cancer induction and bacteria, with special emphasis on colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIEC:

Adherent-invasive Escherichia coli

BFT:

Bacteroides fragilis toxin

CDT:

Cytolethal distending toxin

DSBs:

Double-stranded DNA breaks

EPEC:

Enteropathogenic Escherichia coli

ETBF:

Enterotoxigenic B. fragilis

LPS:

Lipopolysaccharide

NTBF:

Non-toxigenic B. fragilis

References

  • Abdulamir, A. S., Hafidh, R. R., Mahdi, L. K., Al-jeboori, T., & Abubaker, F. (2009). Investigation into the controversialassociation of Streptococcus gallolyticus with colorectal cancer and adenoma. BMC Cancer, 9, 403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abeyta, M., Hardy, G. G., & Yother, J. (2003). Genetic alteration of capsule type but not PspA type affects accessibility of surface-bound complement and surface antigens of Streptococcus pneumoniae. Infection and Immunity, 71, 218–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhinai, E. A., Walton, G. E., & Commane, D. M. (2019). The role of the gut microbiota in colorectal cancer causation. International Journal of Molecular Sciences, 20, 5295. https://doi.org/10.3390/ijms20215295.

    Article  CAS  PubMed Central  Google Scholar 

  • Anders, C. M., Wick, E. C., Hechenbleikner, E. M., et al. (2014). Microbiota organization is a distinct feature of proximal colorectal cancers. Proceedings of the National Academy of Sciences, 111(51), 18321–18326.

    Article  CAS  Google Scholar 

  • Arnold, M., Sierra, M. S., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2017). Global patterns and trends in colorectal cancer incidence and mortality. Gut, 66, 683–691.

    Article  PubMed  Google Scholar 

  • Arthur, C., Perez-Chanona, A., Mühlbauer, M., et al. (2013). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 338(6103), 120–123.

    Article  CAS  Google Scholar 

  • Arumugam, J., Raes, E., Pelletier, E., et al. (2014). Enterotypes of the human gut microbiome. Nature, 73(7346), 174–180.

    Article  CAS  Google Scholar 

  • Balamurugan, R., Rajendiran, E., George, S., Samuel, G. V., & Ramakrishna, B. S. (2008). Real-timepolymerase chainreaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in thefeces of patients with colorectal cancer. Journal of Gastroenterology and Hepatology, 23, 1298–1303.

    Article  CAS  PubMed  Google Scholar 

  • Balskus, E. P. (2015). Colibactin: Understanding an elusive gut bacterial genotoxin. Natural Product Reports, 32(11), 1534–1540.

    Article  CAS  PubMed  Google Scholar 

  • Barnich, F. A., Carvalho, A. L., Glasser, A.-L., et al. (2007). CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. Journal of Clinical Investigation, 117(6), 1566–1574.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belluz, L. D. B., Guidi, R., Pateras, I. S., et al. (2016). The typhoid toxin promotes host survival and the establishment of a persistent asymptomatic infection. PLoS Pathogens, 12(4), e1005528.

    Article  CAS  Google Scholar 

  • Bengrine-Lefevre, G., Shiryaev, S. E., & Strongin, A. Y. (2011). Distinct interactions with cellular E-cadherin of the two virulent metalloproteinases encoded by a Bacteroidesfragilis pathogenicity island. PLoS One, 9(11), e113896.

    Google Scholar 

  • Blot, W. J., McLaughlin, J. K., Winn, D. M., Austin, D. F., Greenberg, R. S., Preston-Martin, S., Bernstein, L., Schoenberg, J. B., Stemhagen, A., & Fraumeni, J. F., Jr. (1988). Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Research, 48, 3282–3287.

    CAS  PubMed  Google Scholar 

  • Bosch, F. X., Manos, M. M., Munoz, N., Sherman, M., Jansen, A. M., Peto, J., Schiffman, M. H., Moreno, V., Kurman, R., & Shah, K. V. (1995). Prevalence of human papillomavirus in cervical cancer: A worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. Journal of the National Cancer Institute, 87, 796–802.

    Article  CAS  PubMed  Google Scholar 

  • Bray, J., Ferlay, I., Soerjomataram, R. L., Siegel, L. A., & Torre, J. A. (2018). Global cancer statistics 2018 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–342.

    Google Scholar 

  • Buc, E., Dubois, D., Sauvanet, P., Raisch, J., Delmas, J., Darfeuille-Michaud, A., Pezet, D., & Bonnet, R. (2013). High prevalence of mucosa-associated Ε. χολι producing cyclomodulin and genotoxin in colon cancer. PLoS One, 8, e56964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt, J., Romero-Hernandez, B., Perez-Gomez, B., Willhauck-Fleckenstein, M., Holzinger, D., Martin, V., Moreno, V., Linares, C., Dierssen-Sotos, T., Barricarte, A., et al. (2016). Association of Streptococcus gallolyticussubspecies gallolyticus with colorectal cancer: Serological evidence. International Journal of Cancer, 138, 1670–1679.

    Article  CAS  PubMed  Google Scholar 

  • Can. Cancer Soc. (2017). Colorectal cancer statistics. Toronto: Canadian Cancer Society Statistics 2017.

    Google Scholar 

  • Casero, L., & Housseau, F. (2016). Procarcinogenic regulatory T cells in microbial-induced colon cancer. OncoImmunology, 5(4), e1118601.

    Article  CAS  Google Scholar 

  • Castellarin, M., Warren, R. L., Freeman, J. D., Dreolini, L., Krzywinski, M., Strauss, J., Barnes, R., Watson, P., Allen-Vercoe, E., Moore, R. A., et al. (2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Research, 22, 299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, T., Li, Q., Zhang, X., et al. (2018). TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Human Pathology, 79, 93–101.

    Google Scholar 

  • Chen, Y., Peng, Y., Yu, J., et al. (2017). Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget, 8(19), 31802–31814.

    Google Scholar 

  • Chin, C. C., Chen, C. N., Kuo, H. C., et al. (2015). Interleukin-17 induces CC chemokine receptor 6 expression and cell migration in colorectal cancer cells. Journal of Cellular Physiology, 230(7), 1430–1437.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Kim, J., Do, K. H., Park, S. H., & Moon, Y. (2013). Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: An in vitro implication of infection-linked tumor dissemination. Oncogene, 32(41), 4960–4969.

    Article  CAS  PubMed  Google Scholar 

  • Coleman, O. I., & Haller, D. (2017). Bacterial signaling at the intestinal epithelial interface in inflammation and cancer. Frontiers in Immunology, 8, 1927.

    Article  PubMed  CAS  Google Scholar 

  • Costa, T. R. D., Felisberto-Rodrigues, C., Meir, A., Prevost, M. S., Redzej, A., Trokter, M., & Waksman, G. (2015). Secretion systems in Gram-negative bacteria: Structural and mechanistic insights. Nature Reviews. Microbiology, 13, 343.

    Article  CAS  PubMed  Google Scholar 

  • Cougnoux, A., Dalmasso, G., Martinez, R., et al. (2014). Bacterial genotoxincolibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut, 63(12), 1932–1942.

    Article  CAS  PubMed  Google Scholar 

  • Cuevas-Ramos, G., Petit, C. R., Marcq, I., Boury, M., Oswald, E., & Nougayrede, J. P. (2010). Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 107, 11537–11542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dapito Dianne, H., Mencin, A., Gwak, G.-Y., Pradere, J.-P., Jang, M.-K., Mederacke, I., Caviglia Jorge, M., Khiabanian, H., Adeyemi, A., & Bataller, R. (2012). Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell, 21, 504–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott, J., Sperandio, V., Giron, J. A., et al. (2000). The locus of enterocyte effacement (LEE)-encoded regulator controls expression of both LEE- and non-LEE-encoded virulence factors in enteropathogenic and enterohemorrhagic Escherichia coli. Infection and Immunity, 68(11), 6115–6126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Omar, A., White, C., Ambrose, J., McDonald, & Allen-Vercoe, E. (2008). Phenotypic and genotypic analyses of clinical Fusobacterium nucleatum and Fusobacterium periodonticum isolates from the human gut. Anaerobe, 14(6), 301–309.

    Article  CAS  Google Scholar 

  • El-Serag, H. B. (2012). Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 142, 1264–1luna273.

    Article  PubMed  Google Scholar 

  • Elsland, D. V., & Neefjes, J. (2018). Bacterial infections and cancers. EMBO Reports, 19, e46632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fredlund, J., & Enninga, J. (2014). Cytoplasmic access by intracellular bacterial pathogens. Trends in Microbiology, 22, 128–137.

    Article  CAS  PubMed  Google Scholar 

  • Gagniere, J., Raisch, J., Veziant, J., Barnich, N., Bonnet, R., et al. (2016). Gut microbiota imbalance and colorectal cancer. World Journal of Gastroenterology, 22, 501–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Foncillas, J. L., Ryan, K., Vedantam, G., & Viswanathan, V. K. (2014). Enteropathogenic Escherichia coli dynamically regulates EGFR signaling in intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 307(3), G374–G380.

    Article  CAS  Google Scholar 

  • Gewirtz, A. T., Yu, Y., Krishna, U. S., Israel, D. A., Lyons, S. L., & Peek, R. M., Jr. (2004). Helicobacter pylori flagellin evades toll-like receptor 5-mediated innate immunity. The Journal of Infectious Diseases, 189, 1914–1920.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, C., Shields, C. E. D., Wu, S., et al. (2013). Polyamine catabolism contributes to enterotoxigenicBacteroidesfragilis induced colon tumorigenesis. Proceedings of the National Academy of Sciences, 108(37), 15354–15359.

    Article  Google Scholar 

  • Guerra, L., Carr, H. S., Richter-Dahlfors, A., Masucci, M. G., Thelestam, M., Frost, J. A., & Frisan, T. (2004). A bacterial cytotoxin identifies the RhoA exchange factor Net1 as a key effector in the response to DNA damage. PLoS One, 3, e2254.

    Article  CAS  Google Scholar 

  • Gupta, A., Madani, R., & Mukhtar, H. (2010). Streptococcus bovis endocarditis, a silent sign for colonic tumor. Colorectal Disease Offical Journal of Association of Coloproctology of Great Britain & Ireland, 12, 164–171.

    Article  CAS  Google Scholar 

  • Han, Y. H. (2015). Fusobacterium nucleatum: A commensal-turned pathogen. Current Opinion in Microbiology., 23, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Henry, R., Shaughnessy, L., Loessner, M. J., Alberti-Segui, C., Higgins, D. E., & Swanson, J. A. (2006). Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cellular Microbiology, 8, 107–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Luna, M. A., López-Briones, S., & Luria-Pérez, R. (2019). The four horsemen in colon cancer. Journal of Oncology, 2019, 5636272, 12 pages.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hill, M. J. (1991). Bile acids and colorectal cancer: Hypothesis. European Journal of Cancer Prevention, 2(1 Suppl), 69–74.

    Article  Google Scholar 

  • Hirano, S., Nakama, R., Tamaki, M., Masuda, N., & Oda, H. (1981). Isolation and characterization of thirteen intestinal microorganisms capable of 7a-dehydroxylating bile acids. Applied and Environmental Microbiology, 41, 737–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holt, D., Gevers, D., Pedamallu, C. S., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research, 22(2), 292–298.

    Article  CAS  Google Scholar 

  • Housseau, Amerizadeh, F., Sales, S. S., et al. (2017). Therapeutic potential of targeting Wnt/β-catenin pathway in treatment of colorectal cancer: Rational and progress. Journal of Cellular Biochemistry, 118(8), 1979–1983.

    Article  CAS  Google Scholar 

  • Huycke, M. M., Abrams, V., & Moore, D. R. (2002). Enterococcus faecalis produces extracellularsuperoxide andhydrogen peroxide that damages colonic epithelial cell DNA. Carcinogenesis, 23, 529–536.

    Article  CAS  PubMed  Google Scholar 

  • IARC Working Group on the Evaulation of Carcinogenic Risks to Humans. (1994). Schistosomes, liver flukes, and Helicobacter pylori (Vol. 61, pp. 177–240). Lyon: LARC.

    Google Scholar 

  • Kang, M., & Martin, A. (2017). Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development. Seminars in Immunology, 32, 3–13.

    Article  PubMed  Google Scholar 

  • Kawasaki, K., Ernst, R. K., & Miller, S. I. (2004). 3-O-deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through toll-like receptor 4. The Journal of Biological Chemistry, 279, 20044–20048.

    Article  CAS  PubMed  Google Scholar 

  • Khoury, J. D., Tannir, N. M., Williams, M. D., Chen, Y., Yao, H., Zhang, J., Thompson, E. J., TCGA Network, Meric-Bernstam, F., Medeiros, L. J., et al. (2013). Landscape of DNA virus associations across human malignant cancers: Analysis of 3,775 cases using RNA-seq. Journal of Virology, 87, 8916–8926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi, S. (2002). Epidemiology of Helicobacter pylori and gastric cancer. Gastric Cancer, 5, 6–15.

    Article  PubMed  Google Scholar 

  • Kim, G. H., Watzig, S., Tiwari, S., Rose-John, & Kalthoff, H. (2015). Interleukin-6 trans-signaling increases the expression of carcinoembryonic antigen-related cell adhesion molecules 5 and 6 in colorectal cancer cells. BMC Cancer, 15, 975.

    Article  CAS  Google Scholar 

  • Koh, H. K., Geller, A. C., Miller, D. R., Grossbart, T. A., & Lew, R. A. (1996). Prevention and early detection strategies for melanoma and skin cancer. Current status. Archives of Dermatology, 132, 436–443.

    Article  CAS  PubMed  Google Scholar 

  • Koskela, P., Anttila, T., Bjorge, T., Brunsvig, A., Dillner, J., Hakama, M., Hakulinen, T., Jellum, E., Lehtinen, M., et al. (2000). Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. International Journal of Cancer, 85, 35–39.

    Article  CAS  PubMed  Google Scholar 

  • Kostic, A. D., Gevers, D., Pedamallu, C. S., Michaud, M., Duke, F., Earl, A. M., Ojesina, A. I., Jung, J., Bass, A. J., Tabernero, J., et al. (2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research, 22, 292–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, R., Herold, J. L., Schady, D., Davis, J., Kopetz, S., Martinez-Moczygemba, M., Murray, B. E., Han, F., Li, Y., Callaway, E., et al. (2017). Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathogens, 13, e1006440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, R., Herold, J. L., Taylor, J., Xu, J., & Xu, Y. (2018). Variations among Streptococcus gallolyticus subsp. gallolyticusstrains in connection with colorectal cancer. Scientific Reports, 8, 1514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuper, H., Adami, H.-O., & Trichopoulos, D. (2000). Infections as a major preventable cause of human cancer. Journal of Internal Medicine, 248(3), 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Lapaquette, P., Bringer, M.-A., & Darfeuille-Michaud, A. (2012). Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response. Cellular Microbiology, 14(6), 791–807.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y. L., Mehrabian, P., Boyajian, S., et al. (2018). The protective role of Bacteroidesfragilis in a murine model of colitis-associated colorectal cancer. mSphere, 3, 6.

    Google Scholar 

  • Levine, L., Chaudhary, A., & Miller, S. I. (2015). Salmonellae interactions with host processes. Nature Reviews Microbiology, 13(4), 191–205.

    Article  CAS  Google Scholar 

  • Li, Vogelstein, B., & Kinzler, K. W. (2003). Phosphorylation of beta-catenin at S33, S37, or T41 can occur in the absence of phosphorylation at T45 in colon cancer cells. Cancer Research, 63(17), 5234–5235.

    Google Scholar 

  • Liu, X., Lu, R., Wu, S., & Sun, J. (2010a). Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway. FEBS Letters, 584(5), 911–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Lu, R., Xia, Y., Wu, S., & Sun, J. (2010b). Eukaryotic signaling pathways targeted by Salmonella effector protein AvrA in intestinal infection in vivo. BMC Microbiology, 10(1), 326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lofgren, J. L., Whary, M. T., Ge, Z., Muthupalani, S., Taylor, N. S., Mobley, M., Potter, A., Varro, A., Eibach, D., Suerbaum, S., et al. (2011). Lack of commensal flora in Helicobacter pylori-infected INS-GAS mice reduces gastritis and delays intraepithelial neoplasia. Gastroenterology, 140, 210–220.

    Article  PubMed  Google Scholar 

  • Lu, R., Wu, S., Liu, X., Xia, Y., Zhang, Y. G., & Sun, J. (2010). Chronic effects of a Salmonella type III secretion effector protein AvrA in vivo. PLoS One, 5(5), e10505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu, R., Liu, X., Wu, S., et al. (2012). Consistent activation of the β-catenin pathway by Salmonella type-three secretion effector protein AvrA in chronically infected intestine. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(10), G1113–G1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, R., Wu, S., Zhang, Y. G., et al. (2016). Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neoplasia, 18(5), 307–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, R., Zhang, Y. G., & Sun, J. (2017). STAT3 activation in infection and infection-associated cancer. Molecular and Cellular Endocrinology, 451, 80–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddocks, O. D., Short, A. J., Donnenberg, M. S., Bader, S., & Harrison, D. J. (2009). Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLoS One, 4(5), e5517.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maddocks, O. D., Scanlon, K. M., & Donnenberg, M. S. (2013). An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. MBio, 4(3), 00152–00113. https://doi.org/10.1128/mBio.00152-13.

    Article  CAS  Google Scholar 

  • Magdy, A., Elhadidy, M., AbdEllatif, M. E., et al. (2015). Enteropathogenic Escherichia coli (EPEC): Does it have a role in colorectal tumourigenesis? A prospective cohort study. International Journal of Surgery, 18, 169–173.

    Article  CAS  PubMed  Google Scholar 

  • McCoy, N., Araujo-Perez, F., Azcarate-Peri, A., Yeh, J. J., Sandler, R. S., & Keku, T. O. (2013). Fusobacterium is associated with colorectal adenomas. PLoS One, 8(1), e53653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meenan, N. A., Visai, L., Valtulina, V., Schwarz-Linek, U., Norris, N. C., Gurusiddappa, S., Hook, M., Speziale, P., & Potts, J. R. (2007). The tandem beta-zipper model defines high affinity fibronectin-binding repeats within Staphylococcus aureus FnBPA. The Journal of Biological Chemistry, 282, 25893–25902.

    Article  CAS  PubMed  Google Scholar 

  • Mostafa, M. H., Sheweita, S. A., & O’Connor, P. J. (1999). Relationship between schistosomiasis and bladder cancer. Clinical Microbiology Reviews, 12, 97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mughini-Gras, L., Schaapveld, M., Kramers, J., Mooij, S., Neefjes-Borst, E. A., Pelt, W. V., & Neefjes, J. (2018). Increased colon cancer risk after severe Salmonella infection. PLoS One, 13, e0189721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murphy, J. R. (2011). Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins (Basel), 3, 294–308.

    Article  CAS  Google Scholar 

  • Nagai, H., Kagan, J. C., Zhu, X., Kahn, R. A., & Roy, C. R. (2002). A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science, 295, 679–682.

    Google Scholar 

  • Nakayama, M., Hisatsune, J., Yamasaki, E., Isomoto, H., Kurazono, H., Hatakeyama, M., Azuma, T., Yamaoka, Y., Yahiro, K., Moss, J., et al. (2009). Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. The Journal of Biological Chemistry, 284, 1612–1619.

    Google Scholar 

  • Nougayrede, J. P., Homburg, S., Taieb, F., Boury, M., Brzuszkiewicz, E., Gottschalk, G., Buchrieser, C., Hacker, J., Dobrindt, U., & Oswald, E. (2006). Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science, 313, 848–851.

    Article  CAS  PubMed  Google Scholar 

  • Parkin, D. M., Mesher, D., & Sasieni, P. (2011). 13. Cancers attributable to solar (ultraviolet) radiation exposure in the UK in 2010. British Journal of Cancer, 105(Suppl 2), S66–S69.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsonnet, J. (1995). Bacterial infection as a cause of cancer. Environmental Health Perspectives, 103(Suppl 8), 263–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peralta-Ramirez, J., Hernandez, J. M., Manning-Cela, R., et al. (2008). EspF Interacts with nucleation-promoting factors to recruit junctional proteins into pedestals for pedestal maturation and disruption of paracellular permeability. Infection and Immunity, 76(9), 3854–3868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrosino, O., Rubie, C., Kölsch, K., et al. (2013). CCR6/CCL20 chemokine expression profile in distinct colorectal malignancies. Scandinavian Journal of Immunology, 78(3), 298–305.

    Article  CAS  Google Scholar 

  • Pezet, O. D., Scanlon, K. M., & Donnenberg, M. S. (2013). An Escherichia coli effector protein promotes host mutation via depletion of DNA mismatch repair proteins. MBio, 4(3), e00152.

    Google Scholar 

  • Pierce, J. V., & Bernstein, H. D. (2016). Genomic diversity of enterotoxigenic strains of Bacteroides fragilis. PLoS One, 11(6), e0158171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pino, M. S., & Chung, D. C. (2011). Microsatellite instability in the management of colorectal cancer. Expert Review of Gastroenterology & Hepatology, 5(3), 385–399.

    Article  Google Scholar 

  • Platz, V., Krasnov, G. S., Lipatova, A. V., et al. (2016). The dysregulation of polyamine metabolism in colorectal cancer is associated with overexpression of c-Myc and C/EBPbeta rather than enterotoxigenic Bacteroidesfragilis infection. Oxidative Medicine and Cellular Longevity, 2016, 2353560.

    Google Scholar 

  • Pluschke, G., Mayden, J., Achtman, M., & Levine, R. P. (1983). Role of the capsule and the O antigen in resistance of O18:K1 Escherichia coli to complement- mediated killing. Infection and Immunity, 42, 907–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polk, D. B., & Peek, R. M., Jr. (2010). Helicobacter pylori: Gastric cancer and beyond. Nature Reviews. Cancer, 10, 403–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popp, A., Billker, O., & Rudel, T. (2001). Signal transduction pathways induced by virulence factors of Neisseria gonorrhoeae. International Journal of Medical Microbiology, 291, 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Raibaud, S., Schwarz-Linek, U., Kim, J. H., Jenkins, H. T., Baines, E. R., Gurusiddappa, S., Hook, M., & Potts, J. R. (2005). Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes. The Journal of Biological Chemistry, 280, 18803–18809.

    Google Scholar 

  • Rajashekar, R., Liebl, D., Chikkaballi, D., Liss, V., & Hensel, M. (2014). Liver cell imaging reveals novel functions of Salmonella enterica SPI2-T3SS effector proteins in remodeling of the host cell endosomal system. PLoS One, 9, e115423.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rhee, K. J., Wu, S., Wu, X., et al. (2009). Induction of persistent colitis by a human commensal, enterotoxigenicBacteroidesfragilis, in wild-type C57BL/6 mice. Infection and Immunity, 77(4), 1708–1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosadi, F., Fiorentini, C., & Fabbri, A. (2016). Bacterial protein toxins in human cancers. Pathogens and Disease, 74, ftv105.

    Article  PubMed  CAS  Google Scholar 

  • Rous, P. (1910). A transmissible avian neoplasm (Sarcoma of the common fowl.). The Journal of Experimental Medicine, 12(5), 696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinstein, M. R., Wang, X., Liu, W., Hao, Y., Cai, G., & Han, Y. A. (2013). Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host & Microbe, 14(2), 195–206.

    Article  CAS  Google Scholar 

  • Scanu, T., Spaapen, R. M., Bakker, J. M., Pratap, C. B., Wu, L. E., Hofland, I., Broeks, A., Shukla, V. K., Kumar, M., Janssen, H., et al. (2015). Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host & Microbe, 17, 763–774.

    Article  CAS  Google Scholar 

  • Schwabe, R. F., & Jobin, C. (2013). The microbiome and cancer. Nature Reviews Cancer, 13, 800–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears, C. L. (2009). Enterotoxigenic Bacteroides fragilis: A rogue among symbiotes. Clinical Microbiology Reviews, 22, 349–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears, L., Geis, A. L., & Housseau, F. (2015). Bacteroides fragilis subverts mucosal biology: From symbiont to colon carcinogenesis. Journal of Clinical Investigation, 124(10), 4166–4172.

    Article  CAS  Google Scholar 

  • Shaughnessy, L. M., Lipp, P., Lee, K.-D., & Swanson, J. A. (2007). Localization of protein kinase C e to macrophage vacuoles perforated by Listeria monocytogenes cytolysin. Cellular Microbiology, 9, 1695–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shope, R. E., & Hurst, E. W. (1933). Infectious Papillomatosis of Rabbits with a note on the histopathology. The Journal of Experimental Medicine, 58(5), 607–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel, R. L., Jacobs, E. J., Newton, C. C., Feskanich, D., Freedman, N. D., Prentice, R. L., & Jemal, A. (2015). Deaths due to cigarette smoking for 12 smoking related cancers in the United States. JAMA Internal Medicine, 175, 1574–1576.

    Article  PubMed  Google Scholar 

  • Spano, S. (2016). Mechanisms of Salmonella Typhi host restriction. Biophysics of Infection, 915, 283–294.

    Article  CAS  Google Scholar 

  • Stadler, J., Yeung, K. S., Furrer, R., Marcon, N., Himal, H. S., & Bruce, W. R. (1988). Proliferative activity of rectal mucosa and soluble fecal bile acids in patients with normal colons and in patients with colonic polyps or cancer. Cancer Letters, 38, 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Stein, C. H., Dejea, C. M., Edler, D., et al. (2015). Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metabolism, 21(6), 891–897.

    Article  CAS  Google Scholar 

  • Stewart, B. W., & Wild, C. (Eds.). (2014). World cancer report 2014. Lyon: International Agency for Research on Cancer.

    Google Scholar 

  • Swidsinski, A., Khilkin, M., Kerjaschki, D., et al. (1998). Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology, 115(2), 281–286.

    Article  CAS  PubMed  Google Scholar 

  • Tabassam, F. H., Graham, D. Y., & Yamaoka, Y. (2009). Helicobacter pylori activate epidermal growth factor receptor- and phosphatidylinositol 3-OH kinase-dependent Akt and glycogen synthase kinase 3beta phosphorylation. Cellular Microbiology, 11, 70–82.

    Article  CAS  PubMed  Google Scholar 

  • Tilney, L. G., Harb, O. S., Connelly, P. S., Robinson, C. G., & Roy, C. R. (2001). How the parasitic bacterium Legionella pneumophila modifies its phagosome and transforms it into rough ER: Implications for conversion of plasma membrane to the ER membrane. Journal of Cell Science, 114, 4637–4650.

    Article  CAS  PubMed  Google Scholar 

  • Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 65, 87–108.

    Google Scholar 

  • Tran, A. X., Stead, C. M., & Trent, M. S. (2005). Remodeling of Helicobacter pylori lipopolysaccharide. Journal of Endotoxin Research, 11, 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Vannucci, L., Stepankova, R., Kozakova, H., Fiserova, A., Rossmann, P., & Tlaskalova-Hogenova, H. (2008). Colorectal carcinogenesis in germ-free and conventionally reared rats: Different intestinal environments affect the systemic immunity. International Journal of Oncology, 32, 609–617.

    PubMed  Google Scholar 

  • Vizcaino, M. I., & Crawford, J. M. (2015). The colibactin warhead crosslinks DNA. Nature Chemistry, 7(5), 411–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Allen, T. D., May, R. J., Lightfoot, S., Houchen, C. W., & Huycke, M. M. (2008). Enterococcus faecalis inducesaneuploidy and tetraploidy in colonic epithelial cells through a bystander effect. Cancer Research, 68, 9909–9917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Meng, W., Wang, B., & Qiao, L. (2014). Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Letters, 345, 196–202.

    Article  CAS  PubMed  Google Scholar 

  • Wexler, M. (2007). Bacteroides: The good, the bad, and the nitty gritty. Clinical Microbiology Reviews, 20(4), 593–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann, T., Hofbaur, S., Tegtmeyer, N., Huber, S., Sewald, N., Wessler, S., Backert, S., & Rieder, G. (2012). Helicobacter pylori CagL dependent induction of gastrin expression via a novel alphavbeta5-integrin-integrin linked kinase signalling complex. Gut, 61, 986–996.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M. R., Jiang, Y., Villalta, P. W., et al. (2019). The human gut bacterial genotoxincolibactin alkylates DNA. Science, 363, 6428.

    Article  CAS  Google Scholar 

  • Winkelstein, J. A., & Tomasz, A. (1978). Activation of the alternative complement pathway by pneumococcal cell wall teichoic acid. Journal of Immunology, 120, 174–178.

    CAS  Google Scholar 

  • Wong, S. H., & Yu, J. (2019). Gut microbiota in colorectal cancer: Mechanisms of action and clinical applications. Nature Reviews Gastroenterology & Hepatology, 16, 690–704.

    Article  CAS  Google Scholar 

  • Wu, S., Lim, K. C., Huang, J., Saidi, R. F., & Sears, C. L. (1998). Bacteroidesfragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proceedings. National Academy of Sciences. United States of America, 95, 14979–14984.

    Article  CAS  Google Scholar 

  • Wu, S., Powell, J., Mathioudakis, N., Kane, S., Fernandez, E., & Sears, C. L. (2004). Bacteroidesfragilis enterotoxin induces intestinal epithelial cell secretion of interleukin-8 through mitogen-activated protein kinases and a tyrosine kinase-regulated nuclear factor-kappaB pathway. Infection and Immunity, 72, 5832–5839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, S., Ye, Z., Liu, X., et al. (2010). Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 298(5), G784–G794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, J., & Gordon, J. I. (2003). Honor thy symbionts. Proceedings of the National Academy of Sciences, 100(18), 10452–10459.

    Article  CAS  Google Scholar 

  • Ye, Z., Petrof, E. O., Boone, D., Claud, E. C., & Sun, J. (2007). Salmonella effector AvrA regulation of colonic epithelial cell inflammation by deubiquitination. The American Journal of Pathology, 171(3), 882–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, X., Wang, R., Bhattacharya, R., Boulbes, D. R., et al. (2017). Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocyte activation in human colorectal tumors. Cancer Prevention Research, 10(7), 398–409.

    Article  CAS  PubMed  Google Scholar 

  • Zhan, P., Suo, L., Qian, Q., Shen, X., et al. (2011). Chlamydia pneumoniae infection and lung cancer risk: A meta-analysis. European Journal of Cancer, 47(5), 742–747. https://doi.org/10.1016/j.ejca.2010.11.003.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Weng, Y., Gan, H., Zhao, X., & Zhi, F. (2018). Streptococcus gallolyticus conspires myeloid cells to promotetumorigenesis of inflammatory bowel disease. Biochemical and Biophysical Research Communications, 506, 907–911.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vibhay Nath Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A., Tripathi, V.N. (2021). Role of Bacteria in the Development of Cancer. In: Vishvakarma, N.K., Nagaraju, G.P., Shukla, D. (eds) Colon Cancer Diagnosis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-64668-4_5

Download citation

Publish with us

Policies and ethics