Skip to main content

Targeting of Aerobic Glycolysis: An Emerging Therapeutic Approach Against Colon Cancer

  • Chapter
  • First Online:
Colon Cancer Diagnosis and Therapy

Abstract

Colon cancer is one of the leading causes of cancer-associated deaths in men as well as in women worldwide. Therefore, various researches are being conducted to identify suitable therapeutic targets for designing the safer and effective therapeutic regimens against colon cancer. In view of this, aerobic glycolysis has been identified as one of the prominent and potential therapeutic targets for the treatment of colon cancer. Interestingly, overwhelming reports suggest that not the oxidative phosphorylation (OXPHOS) but rather glycolysis is one of the major sources of energy production in colon cancer even in the presence of sufficient oxygen. Hence, the “Warburg effect” or “aerobic glycolysis” is among the most detectable features in colon cancer which directly or indirectly mediates other hallmark features. This metabolic switch benefits colon cancer in several ways with respect to its development and progression, which include promotion of macromolecular synthesis, evasion of apoptosis, drug resistance, and immunosuppression. In colon cancer, mutations in Wnt, p53, and Ras play a critical role in switching the glucose metabolism from mitochondrial oxidative phosphorylation to cytoplasmic glycolysis. Overall, targeting of aerobic glycolysis by synthetic or natural compounds may help in designing the novel therapeutic approaches for the treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-BrPA:

3-Bromopyruvate

ABCB1:

ATP-binding cassette, subfamily B, member 1

AMPK:

5′ adenosine monophosphate-activated protein kinase

APC:

Adenomatous polyposis coli

AT-1:

Atractylenolide 1

BRAF:

B-Raf

CRC:

Colorectal cancer

CSN:

COP9 signalosome complex subunit 5

DCA:

Dichloroacetate

GIST:

Gastrointestinal stromal tumors

GLUTs:

Glucose transporters

KRAS:

Kirsten rat sarcoma viral oncogene homolog

LDHA:

Lactate dehydrogenase A

LPA:

Lysophosphatidic acid

MIF:

Macrophage migration inhibitory factor

NADPH:

Nicotinamide adenine dinucleotide phosphate

PDH:

Pyruvate dehydrogenase

PDK:

Pyruvate dehydrogenase kinase

PDP:

Pyruvate dehydrogenase phosphatase

PFK:

Phosphofructokinase

PHLPP:

pH domain leucine-rich repeat protein phosphatase

PK:

Pyruvate kinase

PPP:

Pentose phosphate pathway

SGLT:

Sodium-dependent glucose cotransporters

TGF-β:

Tumor growth factor-β

TME:

Tumor microenvironment

TRPC5:

Transient receptor potential canonical channel 5

VEGF-A:

Vascular endothelial growth factor A

α-CHC:

α-Cyano-4-hydroxycinnamate

References

  • Alberghina, L., & Gaglio, D. (2014). Redox control of glutamine utilization in cancer. Cell Death & Disease, 5, e1561.

    Article  CAS  Google Scholar 

  • Baba, Y., Nosho, K., Shima, K., Irahara, N., Chan, A. T., Meyerhardt, J. A., Chung, D. C., Giovannucci, E. L., Fuchs, C. S., & Ogino, S. (2010). HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. The American Journal of Pathology, 176, 2292–2301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boland, C. R., Luciani, M. G., Gasche, C., & Goel, A. (2005). Infection, inflammation, and gastrointestinal cancer. Gut, 54, 1321–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68, 394–424.

    Google Scholar 

  • Brown, R. E., Short, S. P., & Williams, C. S. (2018). Colorectal cancer and metabolism. Current Colorectal Cancer Reports, 14, 226–241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine, 6, a026104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui, R., & Shi, X. Y. (2015). Expression of pyruvate kinase M2 in human colorectal cancer and its prognostic value. International Journal of Clinical and Experimental Pathology, 8, 11393–11399.

    PubMed  PubMed Central  Google Scholar 

  • Denko, N. C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Reviews. Cancer, 8, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Ehrmann-Josko, A., Sieminska, J., Gornicka, B., Ziarkiewicz-Wroblewska, B., Ziolkowski, B., & Muszynski, J. (2006). Impaired glucose metabolism in colorectal cancer. Scandinavian Journal of Gastroenterology, 41, 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  • Fang, S., & Fang, X. (2016). Advances in glucose metabolism research in colorectal cancer. Biomedical Reports, 5, 289–295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fearon, E. R., & Vogelstein, B. (1990). A genetic model for colorectal tumorigenesis. Cell, 61, 759–767.

    Article  CAS  PubMed  Google Scholar 

  • Fouad, M. A., Agha, A. M., Merzabani, M. M., & Shouman, S. A. (2013). Resveratrol inhibits proliferation, angiogenesis and induces apoptosis in colon cancer cells: Calorie restriction is the force to the cytotoxicity. Human & Experimental Toxicology, 32, 1067–1080.

    Article  CAS  Google Scholar 

  • Freeman, H. J. (2008). Colorectal cancer risk in Crohn’s disease. World Journal of Gastroenterology, 14, 1810–1811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganapathy-Kanniappan, S., & Geschwind, J. F. (2013). Tumor glycolysis as a target for cancer therapy: Progress and prospects. Molecular Cancer, 12, 152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gatenby, R. A., & Gillies, R. J. (2004). Why do cancers have high aerobic glycolysis? Nature Reviews. Cancer, 4, 891–899.

    Article  CAS  PubMed  Google Scholar 

  • Ge, T., Yang, J., Zhou, S., Wang, Y., Li, Y., & Tong, X. (2020). The role of the pentose phosphate pathway in diabetes and cancer. Frontiers in Endocrinology (Lausanne), 11, 365.

    Article  Google Scholar 

  • Ghanbari Movahed, Z., Rastegari-Pouyani, M., Mohammadi, M. H., & Mansouri, K. (2019). Cancer cells change their glucose metabolism to overcome increased ROS: One step from cancer cell to cancer stem cell? Biomedicine & Pharmacotherapy, 112, 108690.

    Article  CAS  Google Scholar 

  • Gregersen, L. H., Jacobsen, A., Frankel, L. B., Wen, J., Krogh, A., & Lund, A. H. (2012). Microrna-143 down-regulates Hexokinase 2 in colon cancer cells. BMC Cancer, 12, 232.

    Article  CAS  PubMed  Google Scholar 

  • Ha, T. K., & Chi, S. G. (2012). CAV1/caveolin 1 enhances aerobic glycolysis in colon cancer cells via activation of SLC2A3/GLUT3 transcription. Autophagy, 8, 1684–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haber, R. S., Rathan, A., Weiser, K. R., Pritsker, A., Itzkowitz, S. H., Bodian, C., Slater, G., Weiss, A., & Burstein, D. E. (1998). GLUT1 glucose transporter expression in colorectal carcinoma: A marker for poor prognosis. Cancer, 83, 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144, 646–674.

    Article  CAS  PubMed  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science, 253, 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Hong, X., Zhong, L., Xie, Y., Zheng, K., Pang, J., Li, Y., Yang, Y., Xu, X., Mi, P., Cao, H., Zhang, W., Hu, T., Song, G., Wang, D., & Zhan, Y. Y. (2019). Matrine reverses the Warburg effect and suppresses colon cancer cell growth via negatively regulating HIF-1alpha. Frontiers in Pharmacology, 10, 1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C. Y., Huang, C. Y., Pai, Y. C., Lin, B. R., Lee, T. C., Liang, P. H., & Yu, L. C. (2019). Glucose metabolites exert opposing roles in tumor chemoresistance. Frontiers in Oncology, 9, 1282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutton, J. E., Wang, X., Zimmerman, L. J., Slebos, R. J., Trenary, I. A., Young, J. D., Li, M., & Liebler, D. C. (2016). Oncogenic KRAS and BRAF drive metabolic reprogramming in colorectal cancer. Molecular & Cellular Proteomics, 15, 2924–2938.

    Article  CAS  Google Scholar 

  • Jiang, C. H., Sun, T. L., Xiang, D. X., Wei, S. S., & Li, W. Q. (2018). Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Frontiers in Pharmacology, 9, 530.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Katagiri, M., Karasawa, H., Takagi, K., Nakayama, S., Yabuuchi, S., Fujishima, F., Naitoh, T., Watanabe, M., Suzuki, T., Unno, M., & Sasano, H. (2017). Hexokinase 2 in colorectal cancer: A potent prognostic factor associated with glycolysis, proliferation and migration. Histology and Histopathology, 32, 351–360.

    CAS  PubMed  Google Scholar 

  • Kim, A. D., Zhang, R., Han, X., Kang, K. A., Piao, M. J., Maeng, Y. H., Chang, W. Y., & Hyun, J. W. (2015). Involvement of glutathione and glutathione metabolizing enzymes in human colorectal cancer cell lines and tissues. Molecular Medicine Reports, 12, 4314–4319.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E.-Y., Chung, T.-W., Han, C. W., Park, S. Y., Park, K. H., Jang, S. B., & Ha, K.-T. (2019). A novel lactate dehydrogenase inhibitor, 1-(Phenylseleno)-4-(Trifluoromethyl) benzene, suppresses tumor growth through apoptotic cell death. Scientific Reports, 9, 3969.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Ko, J. H., Sethi, G., Um, J. Y., Shanmugam, M. K., Arfuso, F., Kumar, A. P., Bishayee, A., & Ahn, K. S. (2017). The role of resveratrol in cancer therapy. International Journal of Molecular Sciences, 18, 2589.

    Article  PubMed Central  CAS  Google Scholar 

  • Koukourakis, M. I., Giatromanolaki, A., Simopoulos, C., Polychronidis, A., & Sivridis, E. (2005). Lactate dehydrogenase 5 (LDH5) relates to up-regulated hypoxia inducible factor pathway and metastasis in colorectal cancer. Clinical & Experimental Metastasis, 22, 25–30.

    Article  CAS  Google Scholar 

  • Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006a). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: A metabolic survival role for tumor-associated stroma. Cancer Research, 66, 632–637.

    Article  CAS  PubMed  Google Scholar 

  • Koukourakis, M. I., Giatromanolaki, A., Sivridis, E., Gatter, K. C., Harris, A. L., & Tumour Angiogenesis Research, G. (2006b). Lactate dehydrogenase 5 expression in operable colorectal cancer: Strong association with survival and activated vascular endothelial growth factor pathway – a report of the Tumour Angiogenesis Research Group. Journal of Clinical Oncology, 24, 4301–4308.

    Google Scholar 

  • Kumar, A., Kant, S., & Singh, S. M. (2013a). Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation. Toxicology and Applied Pharmacology, 273, 196–208.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Kant, S., & Singh, S. M. (2013b). Targeting monocarboxylate transporter by alpha-cyano-4-hydroxycinnamate modulates apoptosis and cisplatin resistance of Colo205 cells: Implication of altered cell survival regulation. Apoptosis, 18, 1574–1585.

    Article  CAS  PubMed  Google Scholar 

  • La Vecchia, S., & Sebastian, C. (2020). Metabolic pathways regulating colorectal cancer initiation and progression. Seminars in Cell & Developmental Biology, 98, 63–70.

    Article  CAS  Google Scholar 

  • Larki, P., Gharib, E., Yaghoob Taleghani, M., Khorshidi, F., Nazemalhosseini-Mojarad, E., & Asadzadeh Aghdaei, H. (2017). Coexistence of KRAS and BRAF mutations in colorectal cancer: A case report supporting the concept of tumoral heterogeneity. Cell Journal, 19, 113–117.

    PubMed  PubMed Central  Google Scholar 

  • Lee, S. H., Kim, H. J., Lee, J. S., Lee, I. S., & Kang, B. Y. (2007). Inhibition of topoisomerase I activity and efflux drug transporters’ expression by xanthohumol. from hops. Archives of Pharmacal Research, 30, 1435–1439.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Zhao, H., Zhou, X., & Song, L. (2015). Inhibition of lactate dehydrogenase A by microRNA-34a resensitizes colon cancer cells to 5-fluorouracil. Molecular Medicine Reports, 11, 577–582.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Wang, Y., Liu, Z., Guo, X., Miao, Z., & Ma, S. (2020). Atractylenolide I induces apoptosis and suppresses glycolysis by blocking the JAK2/STAT3 Signaling pathway in colorectal cancer cells. Frontiers in Pharmacology, 11, 273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, Y., Hou, L., Li, L., Li, L., Zhu, L., Wang, Y., Huang, X., Hou, Y., Zhu, D., Zou, H., Gu, Y., Weng, X., Wang, Y., Li, Y., Wu, T., Yao, M., Gross, I., Gaiddon, C., Luo, M., Wang, J., & Meng, X. (2020). Dichloroacetate restores colorectal cancer chemosensitivity through the p53/miR-149-3p/PDK2-mediated glucose metabolic pathway. Oncogene, 39, 469–485.

    Article  CAS  PubMed  Google Scholar 

  • Liberti, M. V., & Locasale, J. W. (2016). The Warburg effect: How does it benefit cancer cells? Trends in Biochemical Sciences, 41, 211–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, J., Xia, L., Liang, J., Han, Y., Wang, H., Oyang, L., Tan, S., Tian, Y., Rao, S., Chen, X., Tang, Y., Su, M., Luo, X., Wang, Y., Wang, H., Zhou, Y., & Liao, Q. (2019). The roles of glucose metabolic reprogramming in chemo- and radio-resistance. Journal of Experimental & Clinical Cancer Research, 38, 218.

    Article  CAS  Google Scholar 

  • Liu, W., Fang, Y., Wang, X. T., Liu, J., Dan, X., & Sun, L. L. (2014). Overcoming 5-Fu resistance of colon cells through inhibition of Glut1 by the specific inhibitor WZB117. Asian Pacific Journal of Cancer Prevention, 15, 7037–7041.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wu, K., Shi, L., Xiang, F., Tao, K., & Wang, G. (2016). Prognostic significance of the metabolic marker Hexokinase-2 in various solid tumors: A meta-analysis. PLoS One, 11, e0166230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, W., Li, W., Liu, H., & Yu, X. (2019). Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. International Journal of Biological Sciences, 15, 2497–2508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, X., Cai, Y., He, D., Zou, C., Zhang, P., Lo, C. Y., Xu, Z., Chan, F. L., Yu, S., Chen, Y., Zhu, R., Lei, J., Jin, J., & Yao, X. (2012). Transient receptor potential channel TRPC5 is essential for P-glycoprotein induction in drug-resistant cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 16282–16287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Y. S., Yang, I. P., Tsai, H. L., Huang, C. W., Juo, S. H., & Wang, J. Y. (2014). High glucose modulates antiproliferative effect and cytotoxicity of 5-fluorouracil in human colon cancer cells. DNA and Cell Biology, 33, 64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masoud, G. N., & Li, W. (2015). HIF-1alpha pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica B, 5, 378–389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Merigo, F., Brandolese, A., Facchin, S., Missaggia, S., Bernardi, P., Boschi, F., D’inca, R., Savarino, E. V., Sbarbati, A., & Sturniolo, G. C. (2018). Glucose transporter expression in the human colon. World Journal of Gastroenterology, 24, 775–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Midthun, L., Shaheen, S., Deisch, J., Senthil, M., Tsai, J., & Hsueh, C. T. (2019). Concomitant KRAS and BRAF mutations in colorectal cancer. Journal of Gastrointestinal Oncology, 10, 577–581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteiro, R., Calhau, C., Silva, A. O., Pinheiro-Silva, S., Guerreiro, S., Gartner, F., Azevedo, I., & Soares, R. (2008). Xanthohumol inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. Journal of Cellular Biochemistry, 104, 1699–1707.

    Article  CAS  PubMed  Google Scholar 

  • Nathke, I., & Rocha, S. (2011). Antagonistic crosstalk between APC and HIF-1alpha. Cell Cycle, 10, 1545–1547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton, I. P., Kenneth, N. S., Appleton, P. L., Nathke, I., & Rocha, S. (2010). Adenomatous polyposis coli and hypoxia-inducible factor-1{alpha} have an antagonistic connection. Molecular Biology of the Cell, 21, 3630–3638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • No, Y. R., Lee, S. J., Kumar, A., & Yun, C. C. (2015). HIF1alpha-induced by lysophosphatidic acid is stabilized via interaction with MIF and CSN5. PLoS One, 10, e0137513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osthus, R. C., Shim, H., Kim, S., Li, Q., Reddy, R., Mukherjee, M., Xu, Y., Wonsey, D., Lee, L. A., & Dang, C. V. (2000). Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. The Journal of Biological Chemistry, 275, 21797–21800.

    Article  CAS  PubMed  Google Scholar 

  • Pillai, S. R., Damaghi, M., Marunaka, Y., Spugnini, E. P., Fais, S., & Gillies, R. J. (2019). Causes, consequences, and therapy of tumors acidosis. Cancer Metastasis Reviews, 38, 205–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy, R. M., & Fleshman, J. W. (2006). Colorectal gastrointestinal stromal tumors: A brief review. Clinics in Colon and Rectal Surgery, 19, 69–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin, D. C., Shaker, A., & Levin, M. S. (2012). Chronic intestinal inflammation: Inflammatory bowel disease and colitis-associated colon cancer. Frontiers in Immunology, 3, 107.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryan-Harshman, M., & Aldoori, W. (2007). Diet and colorectal cancer: Review of the evidence. Canadian Family Physician, 53, 1913–1920.

    PubMed  PubMed Central  Google Scholar 

  • Saeed, O., Lopez-Beltran, A., Fisher, K. W., Scarpelli, M., Montironi, R., Cimadamore, A., Massari, F., Santoni, M., & Cheng, L. (2019). RAS genes in colorectal carcinoma: Pathogenesis, testing guidelines and treatment implications. Journal of Clinical Pathology, 72, 135–139.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Arago, M., & Cuezva, J. M. (2011). The bioenergetic signature of isogenic colon cancer cells predicts the cell death response to treatment with 3-bromopyruvate, iodoacetate or 5-fluorouracil. Journal of Translational Medicine, 9, 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoyo-Ramos, P., Likhatcheva, M., Garcia-Zepeda, E. A., Castaneda-Patlan, M. C., & Robles-Flores, M. (2014). Hypoxia-inducible factors modulate the stemness and malignancy of colon cancer cells by playing opposite roles in canonical Wnt signaling. PLoS One, 9, e112580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satoh, K., Yachida, S., Sugimoto, M., Oshima, M., Nakagawa, T., Akamoto, S., Tabata, S., Saitoh, K., Kato, K., Sato, S., Igarashi, K., Aizawa, Y., Kajino-Sakamoto, R., Kojima, Y., Fujishita, T., Enomoto, A., Hirayama, A., Ishikawa, T., Taketo, M. M., Kushida, Y., Haba, R., Okano, K., Tomita, M., Suzuki, Y., Fukuda, S., Aoki, M., & Soga, T. (2017). Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proceedings of the National Academy of Sciences of the United States of America, 114, E7697–E7706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunier, E., Benelli, C., & Bortoli, S. (2016). The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents. International Journal of Cancer, 138, 809–817.

    Article  CAS  PubMed  Google Scholar 

  • Saunier, E., Antonio, S., Regazzetti, A., Auzeil, N., Laprevote, O., Shay, J. W., Coumoul, X., Barouki, R., Benelli, C., Huc, L., & Bortoli, S. (2017). Resveratrol reverses the Warburg effect by targeting the pyruvate dehydrogenase complex in colon cancer cells. Scientific Reports, 7, 6945.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sawayama, H., Miyanari, N., & Baba, H. (2015). Cancer metabolism in gastrointestinal cancer. Journal of Cancer Metastasis and Treatment, 1, 172–182.

    Article  CAS  Google Scholar 

  • Scatena, R., Bottoni, P., Pontoglio, A., Mastrototaro, L., & Giardina, B. (2008). Glycolytic enzyme inhibitors in cancer treatment. Expert Opinion on Investigational Drugs, 17, 1533–1545.

    Article  CAS  PubMed  Google Scholar 

  • Schatoff, E. M., Leach, B. I., & Dow, L. E. (2017). Wnt signaling and colorectal cancer. Current Colorectal Cancer Reports, 13, 101–110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebio, A., Kahn, M., & Lenz, H. J. (2014). The potential of targeting Wnt/beta-catenin in colon cancer. Expert Opinion on Therapeutic Targets, 18, 611–615.

    Article  CAS  PubMed  Google Scholar 

  • Semenza, G. L. (2009). Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Seminars in Cancer Biology, 19, 12–16.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, H., Parihar, L., & Parihar, P. (2011). Review on cancer and anticancerous properties of some medicinal plants. Journal of Medicinal Plant Research, 5(10), 1818–1835.

    Google Scholar 

  • Shi, T., Ma, Y., Cao, L., Zhan, S., Xu, Y., Fu, F., Liu, C., Zhang, G., Wang, Z., Wang, R., Lu, H., Lu, B., Chen, W., & Zhang, X. (2019). B7-H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death & Disease, 10, 308.

    Article  Google Scholar 

  • Shibuya, N., Inoue, K., Tanaka, G., Akimoto, K., & Kubota, K. (2015). Augmented pentose phosphate pathway plays critical roles in colorectal carcinomas. Oncology, 88, 309–319.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70, 7–30.

    Google Scholar 

  • Sun, Y., Liu, Z., Zou, X., Lan, Y., Sun, X., Wang, X., Zhao, S., Jiang, C., & Liu, H. (2015). Mechanisms underlying 3-bromopyruvate-induced cell death in colon cancer. Journal of Bioenergetics and Biomembranes, 47, 319–329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanikachalam, K., & Khan, G. (2019). Colorectal cancer and nutrition. Nutrients, 11, 164.

    Article  CAS  PubMed Central  Google Scholar 

  • Vander Heiden, M. G., & Deberardinis, R. J. (2017). Understanding the intersections between metabolism and cancer biology. Cell, 168, 657–669.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Zhao, L., Zhu, L. T., Wang, Y., Pan, D., Yao, J., You, Q. D., & Guo, Q. L. (2014). Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1alpha and glycolysis, by inhibiting PI3K/Akt signaling pathway. Molecular Carcinogenesis, 53 Suppl 1, E107–E118.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Wang, H., Liu, A., Fang, C., Hao, J., & Wang, Z. (2015a). Lactate dehydrogenase A negatively regulated by miRNAs promotes aerobic glycolysis and is increased in colorectal cancer. Oncotarget, 6, 19456–19468.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, K., Fan, H., Chen, Q., Ma, G., Zhu, M., Zhang, X., Zhang, Y., & Yu, J. (2015b). Curcumin inhibits aerobic glycolysis and induces mitochondrial-mediated apoptosis through hexokinase II in human colorectal cancer cells in vitro. Anti-Cancer Drugs, 26, 15–24.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T., Ning, K., Sun, X., Zhang, C., Jin, L. F., & Hua, D. (2018). Glycolysis is essential for chemoresistance induced by transient receptor potential channel C5 in colorectal cancer. BMC Cancer, 18, 207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warburg, O. (1956). On the origin of cancer cells. Science, 123, 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Xing, B. C., Wang, C., Ji, F. J., & Zhang, X. B. (2018). Synergistically suppressive effects on colorectal cancer cells by combination of mTOR inhibitor and glycolysis inhibitor, Oxamate. International Journal of Clinical and Experimental Pathology, 11, 4439–4445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong, X., Wen, Y. A., Mitov, M. I., Oaks, M. C., Miyamoto, S., & Gao, T. (2017). PHLPP regulates hexokinase 2-dependent glucose metabolism in colon cancer cells. Cell Death Discovery, 3, 16103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, P., Li, Z., Fu, R., Wu, H., & Li, Z. (2014). Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cellular Signalling, 26, 1853–1862.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Ren, S., Xu, F., Ma, Z., Liu, X., & Wang, L. (2019). Recent advances in the pharmacological activities of dioscin. BioMed Research International, 2019, 5763602.

    PubMed  PubMed Central  Google Scholar 

  • Yin, T. F., Wang, M., Qing, Y., Lin, Y. M., & Wu, D. (2016). Research progress on chemopreventive effects of phytochemicals on colorectal cancer and their mechanisms. World Journal of Gastroenterology, 22, 7058–7068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younes, M., Lechago, L. V., & Lechago, J. (1996). Overexpression of the human erythrocyte glucose transporter occurs as a late event in human colorectal carcinogenesis and is associated with an increased incidence of lymph node metastases. Clinical Cancer Research, 2, 1151–1154.

    CAS  PubMed  Google Scholar 

  • Zhang, B., Chu, W., Wei, P., Liu, Y., & Wei, T. (2015). Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I. Free Radical Biology & Medicine, 89, 486–497.

    Article  CAS  Google Scholar 

  • Zhang, D., Fei, Q., Li, J., Zhang, C., Sun, Y., Zhu, C., Wang, F., & Sun, Y. (2016). 2-Deoxyglucose reverses the promoting effect of insulin on colorectal cancer cells in vitro. PLoS One, 11, e0151115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou, Y., Tozzi, F., Chen, J., Fan, F., Xia, L., Wang, J., Gao, G., Zhang, A., Xia, X., Brasher, H., Widger, W., Ellis, L. M., & Weihua, Z. (2012). Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Research, 72, 304–314.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., Yu, X., Li, M., Gong, G., Liu, W., Li, T., Zuo, H., Li, W., Gao, F., & Liu, H. (2020). Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. eBioMedicine, 51, 102570.

    Article  PubMed  Google Scholar 

  • Zilfou, J. T., & Lowe, S. W. (2009). Tumor suppressive functions of p53. Cold Spring Harbor Perspectives in Biology, 1, a001883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

We thankfully acknowledge fellowship support to Pradip Kumar Jaiswara [Award No. 1002/(SC)(CSIR-UGC NET DEC. 2016], Vishal Kumar Gupta [Award No. 1044/(CSIR-UGC NET JUNE 2019], and Shiv Govind Rawat [Award No. 09/013(0772/2018-EMR-I)] from CSIR, New Delhi. The fellowship supports to Rajan Kumar Tiwari [Award No. R/Dev/IX-Sch.(SRF-JRF-CAS-Zoology)/75159] from the University Grants Commission-Career Advancement Scheme (UGC-CAS) and Pratishtha Sonker [Award No. F117.1/201516/RGNF201517SCUTT4822/(SAIII/Website)] from the University Grants Commission (UGC), New Delhi, are highly acknowledged. Funding from the University Grants Commission and Department of Science & Technology, New Delhi, India, in the form of UGC Start-Up Research Grant (F. No. 30-370/2017 (BSR)) and Early Career Research Award (ECR/2016/001117) is highly acknowledged. Financial support from the Interdisciplinary School of Life Sciences (ISLS) and University Grants Commission-Universities with Potential for Excellence (UGC-UPE), Banaras Hindu University, is also acknowledged. We also acknowledge UGC-CAS and the DST-FIST program to the Department of Zoology, Banaras Hindu University, India.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jaiswara, P.K. et al. (2021). Targeting of Aerobic Glycolysis: An Emerging Therapeutic Approach Against Colon Cancer. In: Vishvakarma, N.K., Nagaraju, G.P., Shukla, D. (eds) Colon Cancer Diagnosis and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-64668-4_11

Download citation

Publish with us

Policies and ethics