Skip to main content

Fuzzy-Based Optimal Integration of Multiple Distributed Generations

  • Chapter
  • First Online:
Applications of Fuzzy Logic in Planning and Operation of Smart Grids

Part of the book series: Power Systems ((POWSYS))

  • 319 Accesses

Abstract

This chapter introduces an important multiobjective optimization strategy based on the algorithm of whale optimization (MOWOA) and fuzzy decision-making for efficient integration of several distributed generations (DGs) into radial distribution networks (RDNs). The optimum allocation of DGs to RDNs is applied to minimize power losses and voltage deviation (VD) and to optimize the voltage stability index (VSI) at the same time. The compromise solution of the optimum size and location of DGs is reached based on a fuzzy decision-making process. The MOWOA algorithm is approved using the IEEE radial distribution: 33- and 69-buses. The performance of the MOWOA is assessed by a detailed analysis with other competitive optimization techniques. The results indicate that the MOWOA with the fuzzy decision-making is successful in assigning a minimum power loss and convergence rates into the DGs allocation problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Rahmani-Andebili, Cooperative distributed energy scheduling in microgrids, in Electric Distribution Network Management and Control: Springer, 2018, pp. 235–254

    Google Scholar 

  2. M. Rahmani-Andebili, Analyzing the effects of problem parameters on the operation cost of the networked microgrids, in 2020 IEEE Kansas Power and Energy Conference (KPEC), 2020, pp. 1–6: IEEE

    Google Scholar 

  3. M. Rahmani-Andebili, Distributed generation placement planning modeling feeder’s failure rate and customer’s load type. IEEE Trans. Ind. Electron. 63(3), 1598–1606 (2015)

    Article  Google Scholar 

  4. M. Rahmani-andebili, Simultaneous placement of DG and capacitor in distribution network. Electr Power Syst Res 131, 1–10 (2016)

    Article  Google Scholar 

  5. M.P. Ha, P.D. Huy, V.K. Ramachandaramurthy, A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renew. Sustain. Energy. Rev. 75, 293–312 (2017)

    Article  Google Scholar 

  6. W. Zhao, L. Wang, Z. Zhang, Artificial ecosystem-based optimization: a novel nature-inspired meta-heuristic algorithm. Neural Comput. Applic., 1–43 (2019)

    Google Scholar 

  7. T. Dutta, S. Bhattacharyya, S. Dey, J. Platos, Border Collie Optimization, IEEE Access, 2020.

    Book  Google Scholar 

  8. X.-S. Yang, Nature-inspired metaheuristic algorithms (Luniver Press, 2010)

    Google Scholar 

  9. S. Mirjalili, A. Lewis, The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  10. M. Mitchell, An introduction to genetic algorithms (MIT Press, 1998)

    Book  Google Scholar 

  11. R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Global. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  12. O. Montiel, O. Castillo, P. Melin, A.R. Díaz, R. Sepúlveda, Human evolutionary model: A new approach to optimization. Inf Sci 177(10), 2075–2098 (2007)

    Article  Google Scholar 

  13. X. Chen, Y. Liu, X. Li, Z. Wang, S. Wang, C. Gao, A new evolutionary multiobjective model for traveling salesman problem. IEEE Access 7, 66964–66979 (2019)

    Article  Google Scholar 

  14. D. Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  15. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN’95-International Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948, IEEE.

    Google Scholar 

  16. E. Cuevas, M. Cienfuegos, A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Syst. Appl. 41(2), 412–425 (2014)

    Article  Google Scholar 

  17. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  18. S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl based Syst 89, 228–249 (2015)

    Article  Google Scholar 

  19. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv Eng Softw 69, 46–61 (2014)

    Article  Google Scholar 

  20. S. Saremi, S. Mirjalili, A. Lewis, Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017)

    Article  Google Scholar 

  21. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp Swarm algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  22. A.A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris hawks optimization: Algorithm and applications. Futur. Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  23. A. K. Das, D. K. Pratihar, A new bonobo optimizer (BO) for real-parameter optimization, in 2019 IEEE Region 10 Symposium (TENSYMP), 2019, pp. 108–113, IEEE

    Google Scholar 

  24. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  25. B. Webster, P. J. Bernhard, A local search optimization algorithm based on natural principles of gravitation, 2003

    Google Scholar 

  26. H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm–A novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput. Struct. 110, 151–166 (2012)

    Article  Google Scholar 

  27. A. Kaveh, T. Bakhshpoori, Water evaporation optimization: a novel physically inspired optimization algorithm. Comput. Struct. 167, 69–85 (2016)

    Article  Google Scholar 

  28. W. Zhao, L. Wang, Z. Zhang, Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl Based Syst 163, 283–304 (2019)

    Article  Google Scholar 

  29. A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: A novel optimization algorithm. Knowl Based Syst 191, 105190 (2020)

    Article  Google Scholar 

  30. H. Shareef, A.A. Ibrahim, A.H. Mutlag, Lightning search algorithm. Appl. Soft Comput. 36, 315–333 (2015)

    Article  Google Scholar 

  31. L. M. Zhang, C. Dahlmann, Y. Zhang, Human-inspired algorithms for continuous function optimization, in 2009 IEEE international conference on intelligent computing and intelligent systems, 2009, vol. 1, pp. 318–321, IEEE

    Google Scholar 

  32. S. Satapathy, A. Naik, Social group optimization (SGO): A new population evolutionary optimization technique. Complex Intell. Syst. 2(3), 173–203 (2016)

    Article  Google Scholar 

  33. R.V. Rao, V.J. Savsani, D. Vakharia, Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  34. H. Bouchekara, Most Valuable Player Algorithm: a novel optimization algorithm inspired from sport. Operational Research, 1–57 (2017)

    Google Scholar 

  35. A.H. Kashan, League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships. Appl Soft Comput. 16, 171–200 (2014)

    Article  Google Scholar 

  36. M.H. Moradi, M. Abedini, A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 34(1), 66–74 (2012)

    Article  Google Scholar 

  37. S. Sultana, P.K. Roy, Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. Int. J. Electr. Power Energy Syst. 63, 534–545 (2014)

    Article  Google Scholar 

  38. S. Sharma, S. Bhattacharjee, A. Bhattacharya, Quasi-oppositional swine influenza model based optimization with quarantine for optimal allocation of DG in radial distribution network. Int. J. Electr. Power Energy Syst. 74, 348–373 (2016)

    Article  Google Scholar 

  39. S.N.G. Naik, D.K. Khatod, M.P. Sharma, Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks. IET Gener. Trans. Distrib. 9(3), 209–220 (2014)

    Article  Google Scholar 

  40. K. Nekooei, M.M. Farsangi, H. Nezamabadi-Pour, K.Y. Lee, An improved multi-objective harmony search for optimal placement of DGs in distribution systems. IEEE Trans. Smart Grid 4(1), 557–567 (2013)

    Article  Google Scholar 

  41. N.K. Meena, A. Swarnkar, N. Gupta, K.R. Niazi, Multi-objective Taguchi approach for optimal DG integration in distribution systems. IET Gener. Transm. Distrib. 11(9), 2418–2428 (2017)

    Article  Google Scholar 

  42. C. Yammani, S. Maheswarapu, S.K. Matam, A Multi-objective Shuffled Bat algorithm for optimal placement and sizing of multi distributed generations with different load models. Int. J. Electr Power Energy Syst. 79, 120–131 (2016)

    Article  Google Scholar 

  43. S. Mirjalili, S. Saremi, S.M. Mirjalili, L.d.S. Coelho, Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization. Expert Syst Applications 47, 106–119 (2016)

    Article  Google Scholar 

  44. W. Ahmed, A. Selim, S. Kamel, J. Yu, F. Jurado, Probabilistic load flow solution considering optimal allocation of SVC in radial distribution system. Int. J. Interact. Multimedia Artif. Intell. 5(3) (2018)

    Google Scholar 

  45. R. Rajaram, K.S. Kumar, N. Rajasekar, Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with Distributed Generation (DG). Energy Rep 1, 116–122 (2015)

    Article  Google Scholar 

  46. S.K. Injeti, N.P. Kumar, A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. Int. J. Electr. Power Energy Syst 45(1), 142–151 (2013)

    Article  Google Scholar 

  47. M. Baran, F.F. Wu, Optimal sizing of capacitors placed on a radial distribution system. IEEE Trans. Power Delivery 4(1), 735–743 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the National Research and Development Agency of Chile (ANID), ANID/Fondap/15110019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Jurado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selim, A., Kamel, S., Jurado, F. (2021). Fuzzy-Based Optimal Integration of Multiple Distributed Generations. In: Rahmani-Andebili, M. (eds) Applications of Fuzzy Logic in Planning and Operation of Smart Grids. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-64627-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64627-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64626-4

  • Online ISBN: 978-3-030-64627-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics