Skip to main content

Parallel Efficiency of Time-Integration Strategies for the Next Generation Global Weather Prediction Model

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2020)

Abstract

Next generation global numerical weather prediction models will have horizontal resolution of 3–5 km that lead to the problem of about \(10^{10}\) degrees of freedom. To meet operational requirements for medium-range weather forecast, \(O(10^4)\)-\(O(10^5)\) processor cores have to be used efficiently. The non-hydrostatic equation set will be used so models have to treat efficiently a number of fast-propagating wave families. Therefore, time-integration scheme is crucial for the scalability and computational efficiency.

The next generation global atmospheric model is currently under development at INM RAS and Hydrometcentre of Russia. To choose the time integration scheme for the new model, we evaluate scalability and efficiency of several options (including exponential propagation integrator) using linearized equation set. We also present a parallel framework developed for the solution of atmospheric dynamic equations on the spherical cube grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, S., et al.: LFRic: meeting the challenges of scalability and performance portability in weather and climate models. J. Parallel Distrib. Comput. 132, 383–396 (2019). https://doi.org/10.1016/j.jpdc.2019.02.007. http://www.sciencedirect.com/science/article/pii/S0743731518305306

  2. Arakawa, A., Lamb, V.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, vol. 17, pp. 173–265. Academic Press, New York (1977)

    Google Scholar 

  3. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997). https://doi.org/10.1016/S0168-9274(97)00056-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, P., Thorpe, A., Brunet, G.: The quiet revolution of numerical weather prediction. Nature 535, 47–55 (2015). https://doi.org/10.1038/nature14956

    Article  Google Scholar 

  5. Benacchio, T., Klein, R.: A semi-implicit compressible model for atmospheric flows with seamless access to soundproof and hydrostatic dynamics. Mon. Weather Rev. 147(11), 4221–4240 (2019). https://doi.org/10.1175/MWR-D-19-0073.1

    Article  Google Scholar 

  6. Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147(2), 362–387 (1998). https://doi.org/10.1006/jcph.1998.6093. http://www.sciencedirect.com/science/article/pii/S0021999198960934

    Article  MathSciNet  MATH  Google Scholar 

  7. Deconinck, W., et al.: Atlas: a library for numerical weather prediction and climate modelling. Comput. Phys. Commun. 220, 188–204 (2017). https://doi.org/10.1016/j.cpc.2017.07.006. http://www.sciencedirect.com/science/article/pii/S0010465517302138

  8. Gardner, D.J., Guerra, J.E., Hamon, F.P., Reynolds, D.R., Ullrich, P.A., Woodward, C.S.: Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models. Geosci. Model Dev. 11(4), 1497–1515 (2018). https://doi.org/10.5194/gmd-11-1497-2018. https://www.geosci-model-dev.net/11/1497/2018/

  9. Gaudreault, S., Pudykiewicz, J.A.: An efficient exponential time integration method for the numerical solution of the shallow water equations on the sphere. J. Comput. Phys. 322, 827–848 (2016). https://doi.org/10.1016/j.jcp.2016.07.012. http://www.sciencedirect.com/science/article/pii/S0021999116302911

  10. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numerica 19, 209–286 (2010). https://doi.org/10.1017/S0962492910000048

    Article  MathSciNet  MATH  Google Scholar 

  11. Holton, J.R.: An Introduction to Dynamic Meteorology, International Geophysics Series, 4th edn., vol. 88. Elsevier Academic Press (2004)

    Google Scholar 

  12. Kennedy, C.A., Carpenter, M.H.: Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Appl. Numer. Math. 44(1), 139–181 (2003). https://doi.org/10.1016/S0168-9274(02)00138-1. http://www.sciencedirect.com/science/article/pii/S0168927402001381

  13. Koskela, A.: Approximating the matrix exponential of an advection-diffusion operator using the incomplete orthogonalization method. In: Abdulle, A., Deparis, S., Kressner, D., Nobile, F., Picasso, M. (eds.) Numerical Mathematics and Advanced Applications - ENUMATH 2013. LNCSE, vol. 103, pp. 345–353. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10705-9_34

    Chapter  Google Scholar 

  14. Luan, V.T., Pudykiewicz, J.A., Reynolds, D.R.: Further development of efficient and accurate time integration schemes for meteorological models. J. Comput. Phys. 376, 817–837 (2019). https://doi.org/10.1016/j.jcp.2018.10.018. http://www.sciencedirect.com/science/article/pii/S0021999118306818

  15. Melvin, T., Benacchio, T., Shipway, B., Wood, N., Thuburn, J., Cotter, C.: A mixed finite-element, finite-volume, semi-implicit discretization for atmospheric dynamics: cartesian geometry. Q. J. R. Meteorol. Soc. 145(724), 2835–2853 (2019). https://doi.org/10.1002/qj.3501

  16. Mengaldo, G., Wyszogrodzki, A., Diamantakis, M., Lock, S.-J., Giraldo, F.X., Wedi, N.P.: Current and emerging time-integration strategies in global numerical weather and climate prediction. Arch. Comput. Meth. Eng. 26(3), 663–684 (2018). https://doi.org/10.1007/s11831-018-9261-8

    Article  MathSciNet  Google Scholar 

  17. Niesen, J., Wright, W.: Algorithm 919: a krylov subspace algorithm for evaluating the \(\phi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. TOMS 38, 1–19 (2012). https://doi.org/10.1145/2168773.2168781

    Article  MathSciNet  MATH  Google Scholar 

  18. Rančić, M., Purser, R.J., Mesinger, F.: A global shallow-water model using an expanded spherical cube: gnomonic versus conformal coordinates. Q. J. R. Meteorol. Soc. 122(532), 959–982 (1996). https://doi.org/10.1002/qj.49712253209

  19. Sadourny, R.: Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids. Mon. Weather Rev. 100(2), 136–144 (1972). https://doi.org/10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2

  20. Thuburn, J., Woollings, T.: Vertical discretizations for compressible Euler equation atmospheric models giving optimal representation of normal modes. J. Comput. Phys. 203, 386–404 (2005). https://doi.org/10.1016/j.jcp.2004.08.018

    Article  MathSciNet  MATH  Google Scholar 

  21. Ullrich, P.A., Jablonowski, C., Kent, J., Lauritzen, P.H., Nair, R.D., Taylor, M.A.: Dynamical core model intercomparison project (DCMIP) test case document (2012). http://earthsystemcog.org/site_media/docs/DCMIP-TestCaseDocument_v1.7.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Shashkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shashkin, V., Goyman, G. (2020). Parallel Efficiency of Time-Integration Strategies for the Next Generation Global Weather Prediction Model. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2020. Communications in Computer and Information Science, vol 1331. Springer, Cham. https://doi.org/10.1007/978-3-030-64616-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64616-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64615-8

  • Online ISBN: 978-3-030-64616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics