Skip to main content

Novel Reconstruction Errors for Saliency Detection in Hyperspectral Images

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2020)

Abstract

When hyperspectral images are analyzed, a big amount of data, representing the reflectance at hundreds of wavelengths, needs to be processed. Hence, dimensionality reduction techniques are used to discard unnecessary information. In order to detect the so called “saliency”, i.e., the relevant pixels, we propose a bottom-up approach based on three main ingredients: sparse non negative matrix factorization (SNMF), spatial and spectral functions to measure the reconstruction error between the input image and the reconstructed one and a final clustering technique. We introduce novel error functions and show some useful mathematical properties. The method is validated on hyperspectral images and compared with state-of-the-art different approaches.

The research of Antonella Falini is founded by PON Project AIM 1852414 CUP H95G18000120006 ATT1. The research of Cristiano Tamborrino is funded by PON Project “Change Detection in Remote Sensing” CUP H94F18000270006. The research of the other authors is funded by PON Ricerca e Innovazione 2014–2020, the application of the proposed method to the saliency detection task is developed in partial fulfillment of the research objective of project RPASInAir “Sistemi Aeromobili a Pilotaggio Remoto nello spazio aereo non segregato per servizi” (ARS01 00820). While the application to the change detection task is developed in partial fulfillment of the research objective of the project “CLOSE to the Earth” (ARS01 00141).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/gistairc/HS-SOD.

  2. 2.

    https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset/-/tree/master.

References

  1. Appice, A., Lomuscio, F., Falini, A., Tamborrino, C., Mazzia, F., Malerba, D.: Saliency detection in hyperspectral images using autoencoder-based data reconstruction. In: Helic, D., Leitner, G., Stettinger, M., Felfernig, A., Raś, Z.W. (eds.) ISMIS 2020. LNCS (LNAI), vol. 12117, pp. 161–170. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59491-6_15

    Chapter  Google Scholar 

  2. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  Google Scholar 

  3. Falini, A., et al.: Saliency detection for hyperspectral images via sparse-non negative-matrix-factorization and novel distance measures. In: 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS). pp. 1–8. IEEE (2020)

    Google Scholar 

  4. Gao, D., Vasconcelos, N.: Discriminant saliency for visual recognition from cluttered scenes. In: Advances in Neural Information Processing Systems. pp. 481–488 (2005)

    Google Scholar 

  5. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., Wu, F.: Background prior-based salient object detection via deep reconstruction residual. IEEE Trans. Circuits Syst. Video Technol. 25(8), 1309–1321 (2014)

    Google Scholar 

  6. Imamoglu, N., et al.: Hyperspectral image dataset for benchmarking on salient object detection. In: 0th International Conference on Quality of Multimedia Experience (QoMEX) (2018)

    Google Scholar 

  7. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. In: Matters of intelligence, pp. 115–141. Springer (1987)

    Google Scholar 

  8. Kruse, F.A., et al.: The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44(2–3), 145–163 (1993)

    Article  Google Scholar 

  9. Liu, J., Liu, Y.: A model for saliency detection using NMFsc algorithm. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 301–308. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03767-2_37

    Chapter  Google Scholar 

  10. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Radke, R.J., Andra, S., Al-Kofahi, O., Roysam, B.: Image change detection algorithms: a systematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005)

    Article  MathSciNet  Google Scholar 

  12. Seydi, S.T., Hasanlou, M.: A new land-cover match-based change detection for hyperspectral imagery. Euro. J. Remote Sens. 50(1), 517–533 (2017)

    Article  Google Scholar 

  13. Tang, J., Lewis, P.H.: Non-negative matrix factorisation for object class discovery and image auto-annotation. In: Proceedings of the 2008 international conference on Content-based image and video retrieval. pp. 105–112. ACM (2008)

    Google Scholar 

  14. Tao, D., Cheng, J., Song, M., Lin, X.: Manifold ranking-based matrix factorization for saliency detection. IEEE Trans. Neural Networks Learn. Syst. 27(6), 1122–1134 (2015)

    Article  MathSciNet  Google Scholar 

  15. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)

    Article  Google Scholar 

  16. van der Walt, S., et al.: The scikit-image contributors: scikit-image: image processing in Python. Peer J. 2, e453 (2014)

    Article  Google Scholar 

  17. Yang, Z., Mueller, R.: Spatial-spectral cross-correlation for change detection–a case study for citrus coverage change detection. In: ASPRS 2007 Annual Conference (2007)

    Google Scholar 

  18. Zheng, Q., Yu, S., You, X.: Coarse-to-fine salient object detection with low-rank matrix recovery. Neurocomputing (2019)

    Google Scholar 

  19. Zupan, B., et al.: Nimfa: A python library for nonnegative matrix factorization. J. Mach. Learn. Res. 13, 849–853 (2012)

    Google Scholar 

Download references

Acknowledgments

Antonella Falini, Cristiano Tamborrino and Francesca Mazzia are members of the INdAM Research group GNCS. Rosa Maria Mininni is member of the INdAM Research group GNAMPA. Annalisa Appice and Donato Malerba are members of the CINI Big Data Laboratory.

This work was also developed within the project “Modelli e metodi per l’analisi di dati complessi e voluminosi” of the University of Bari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Falini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falini, A. et al. (2020). Novel Reconstruction Errors for Saliency Detection in Hyperspectral Images. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2020. Lecture Notes in Computer Science(), vol 12565. Springer, Cham. https://doi.org/10.1007/978-3-030-64583-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64583-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64582-3

  • Online ISBN: 978-3-030-64583-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics