Skip to main content

Artificial Intelligence in Epidemiology

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

John Last defined epidemiology as “The study of the distribution and determinants of health-related states or events in specified populations, and the application of this study to the control of health problems.” It underscores that epidemiologists are not concerned only with disease but with health-related events, and that ultimately epidemiology is committed to control of disease. Initially focused on the disease, the objects of investigation in epidemiology now correspond to any factor that may influence the state of health of the human being, i.e., biological, clinical factors, in relation to the physical, mental, and social environment. Regardless of the field considered and the type of epidemiology (clinical or population based) referred to, the basic brick of epidemiology remains the data. The data must be as valid and precise as possible to ensure validity and reliability of results. The use of artificial intelligence and its methods can occur at different levels and in several areas of epidemiology. At present, we can consider three main use cases. First, AI can add to a long tradition of using more or less sophisticated observational data analysis methods. It has a role to play in causal inference. Second, AI can intervene at the stage of reconciling and structuring siled and varied data sources. Finally, AI can simply bring new ways of exploring and using data, such as sentiment analysis applied to social media. These three use cases are found, in practice, often intermingled and do not necessarily meet in isolation from each other. The private sector (intermediation platforms) and policy makers are the two other actors involved in the forms that AI uses in epidemiology will take.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonita R, Beaglehole R, Kjellstrom T. Elements of epidemiology (French); 2010.

    Google Scholar 

  2. Last JM. A dictionary of epidemiology. 4th ed. Oxford: Oxford University Press; 2001.

    Google Scholar 

  3. Valleron J. Les rôles de la modélisation en épidémiologie. Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie. 2000;323(5):429–33.

    Article  CAS  Google Scholar 

  4. Laney D. 3D data management: controlling data volume, velocity, and variety. Rome: Application Delivery Strategies Meta Group; 2001.

    Google Scholar 

  5. Flahault A, Bar-Hen A, Paragios N. Public health and epidemiology informatics. Yearb Med Inform. 2016;1:240–6. https://doi.org/10.15265/IY-2016-021.

    Article  Google Scholar 

  6. Beam AL, Kohane IS. Big data and machine learning in health care. JAMA. 2018;319(13):1317–8. https://doi.org/10.1001/jama.2017.18391.

    Article  PubMed  Google Scholar 

  7. Huang M, Gibson C, Terry A. Measuring electronic health record use in primary care: a scoping review. Appl Clin Inform. 2018;9(1):15–33.

    Google Scholar 

  8. Greenhalgh T, Hinder S, Stramer K, Bratan T, Russell J. Adoption, non-adoption, and abandonment of a personal electronic health record: case study of HealthSpace. BMJ. 2010;341:c5814.

    Article  Google Scholar 

  9. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.

    Article  Google Scholar 

  10. Thiébaut R, Thiessard F. Section editors for the IMIA yearbook section on public health and epidemiology informatics. Artificial intelligence in public health and epidemiology. Yearb Med Inform. 2018;27(1):207–10. https://doi.org/10.1055/s-0038-1667082.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Unberath P, Prokosch HU, Gründner J, Erpenbeck M, Maier C, Christoph J. EHR-independent predictive decision support architecture based on OMOP. Appl Clin Inform. 2020;11(3):399–404. https://doi.org/10.1055/s-0040-1710393.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Choudhury O, Park Y, Salonidis T, Gkoulalas-Divanis A, Sylla I, Das AK. Predicting adverse drug reactions on distributed health data using federated learning. In: AMIA annual symposium proceedings, 2020 Mar 4; 2019. p. 313–322.

    Google Scholar 

  13. Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F. Federated learning for healthcare informatics. J Healthc Inform Res. 2020:1–19. https://doi.org/10.1007/s41666-020-00082-4.

  14. Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10(1):12598. https://doi.org/10.1038/s41598-020-69250-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luce BR, Connor JT, Broglio KR, Mullins CD, Ishak KJ, Saunders E, Davis BR, RE-ADAPT (REsearch in ADAptive methods for Pragmatic Trials) Investigators. Using Bayesian Adaptive trial designs for comparative effectiveness research: a virtual trial execution. Ann Intern Med. 2016;165(6):431–8.

    Article  Google Scholar 

  16. Dolgin E. Industry embraces virtual trial platforms. Nat Rev Drug Discov. 2018;17(5):305–6. https://doi.org/10.1038/nrd.2018.66.

    Article  CAS  PubMed  Google Scholar 

  17. Thacker SB, Berkelman RL. Public health surveillance in the United States. Epidemiol Rev. 1988;10:164–90.

    Article  CAS  Google Scholar 

  18. Chiolero A, Buckeridge D. Glossary for public health surveillance in the age of data science. J Epidemiol Community Health. 2020;74:612–6.

    PubMed  Google Scholar 

  19. Ginsberg J, Mohebbi M, Patel R, Brammer L, Smolinski M, Brilliant L. Detecting influenza epidemics using search engine query data. Nature. 2009;457:1012–4.

    Article  CAS  Google Scholar 

  20. Huang P, MacKinlay A, Yepes AJ. Syndromic surveillance using generic medical entities on Twitter. In: Proceedings of Australasian Language Technology Association Workshop; 2016. p. 35–44.

    Google Scholar 

  21. White R, Tatonetti N, Shah N, Altman R, Horvitz E. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc. 2013;20(3):404–8.

    Article  Google Scholar 

  22. Fenner Y, Garland SM, Moore EE, Jayasinghe Y, Fletcher A, Tabrizi SN, Gunasekaran B, Wark JD. Web-based recruiting for health research using a social networking site: an exploratory study. J Med Internet Res. 2012;14(1):e20. https://doi.org/10.2196/jmir.1978.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dodds PS, Harris KD, Kloumann IM, Bliss CA, Danforth CM. Temporal patterns of happiness and information in a global social network: hedonometrics and twitter. PLoS One. 2011;6(12):e26752. https://doi.org/10.1371/journal.pone.0026752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mudinas A, Zhang D. Levene combining lexicon and learning based approaches for concept-level sentiment analysis. In: Proceedings of the first international workshop on issues of sentiment discovery and opinion mining (WISDOM '12), vol. 5. New York: Association for Computing Machinery; 2012. p. 1–8. https://doi.org/10.1145/2346676.2346681.

    Chapter  Google Scholar 

  25. Kang GJ, Ewing-Nelson SR, Mackey L, Schlitt JT, Marathe A, Abbas KM, et al. Semantic network analysis of vaccine sentiment in online social media. Vaccine. 2017;35:3621–38.

    Article  Google Scholar 

  26. Pananos AD, Bury TM, Wang C, Schonfeld J, Mohanty SP, Nyhan B, et al. Critical dynamics in population vaccinating behavior. Proc Natl Acad Sci. 2017;114:201704093.

    Article  Google Scholar 

  27. Choi S, Lee J, Kang MG, Min H, Chang YS, Yoon S. Large-scale machine learning of media outlets for understanding public reactions to nation-wide viral infection outbreaks. Methods Inf Med. 2017;129:50–9.

    CAS  Google Scholar 

  28. Margulis AV, Fortuny J, Kaye JA, Calingaert B, Reynolds M, Plana E, et al. Value of free-text comments for validating cancer cases using primary-care data in the UK. Epidemiology. 2018;29:308–13.

    Article  Google Scholar 

  29. Gough A, Hunter RF, Ajao O, Jurek A, McKeown G, Hong J, et al. Tweet for behavior change: using social media for the dissemination of public health messages. JMIR Public Health Surveill. 2017;3:e14.

    Article  Google Scholar 

  30. Dinh A, Miertschin S, Young A, Mohanty SD. A data-driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak. 2019;19(1):211. https://doi.org/10.1186/s12911-019-0918-5.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Flaxman AD, Vos T. Machine learning in population health: opportunities and threats. PLoS Med. 2018;15(11):e1002702. https://doi.org/10.1371/journal.pmed.1002702.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chan CL, Chang CC. Big data, decision models, and public health. Int J Environ Res Public Health. 2020;17(18):6723. https://doi.org/10.3390/ijerph17186723.

    Article  PubMed Central  Google Scholar 

  33. Anderson C. The end of theory: the data deluge makes the scientific method obsolete. Wired; 2008. https://www.wired.com/2008/06/pb-theory

  34. Pigliucci M. The end of theory in science? EMBO Rep. 2009;10(6):534. https://doi.org/10.1038/embor.2009.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Delpierre C, Kelly-Irving M. Big data and the study of social inequalities in health: expectations and issues. Front Public Health. 2018;6:312.

    Article  Google Scholar 

  36. Ziegelstein RC. Personomics. JAMA Intern Med. 2015;175(6):888–9. https://doi.org/10.1001/jamainternmed.2015.0861.

    Article  PubMed  Google Scholar 

  37. Pearl J. An introduction to causal inference. Int J Biostat. 2010;6(2):7. https://doi.org/10.2202/1557-4679.1203.

    Article  PubMed Central  Google Scholar 

  38. Lefèvre T, Lepresle A, Chariot P. Detangling complex relationships in forensic data: principles and use of causal networks and their application to clinical forensic science. Int J Legal Med. 2015;129(5):1163–72. https://doi.org/10.1007/s00414-015-1164-8.

    Article  PubMed  Google Scholar 

  39. Kleinberg J, Ludwig J, Mullainathan S, Obermeyer Z. Prediction policy problems. Am Econ Rev. 2015;105(5):491–5.

    Article  Google Scholar 

  40. Dimeglio C, Kelly-Irving M, Lang T, Delpierre C. Expectations and boundaries for big data approaches in social medicine. J Forensic Legal Med. 2018;57:51–4. https://doi.org/10.1016/j.jflm.2016.11.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Lefèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lefèvre, T., Delpierre, C. (2022). Artificial Intelligence in Epidemiology. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_97

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_97

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics