Skip to main content

AIM in Medical Education

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Artificial intelligence (AI) is making a global impact on various professions ranging from commerce to healthcare. This section looks at how it is beginning and will continue to impact other areas such as medical education. The multifaceted yet socrato-didactic methods of education need to evolve to cater for the twenty-first-century medical educator and trainee. Advances in machine learning and artificial intelligence are paving the way to new discoveries in medical education delivery.

Methods

This chapter begins by introducing the broad concepts of AI that are relevant to medical education and then addresses some of the emerging technologies employed to directly cater for aspects of medical education methodology and innovations to streamline education delivery, education assessments, and education policy. It then builds on this to further explore the nature of new artificial intelligence concepts for medical education delivery, educational assessments, and clinical education research discovery in a PRISMA-guided systematic review and meta-analysis.

Results

Results from the meta-analysis showed improvement from using either AI alone or with conventional education methods compared to conventional methods alone. A significant pooled weighted mean difference ES estimate of ES 4.789; CI 1.9–7.67; p = 0.001, I2 = 93% suggests a 479% learner improvement across domains of accuracy, sensitivity to performing educational tasks, and specificity. Significant amount of bias between studies was identified and a model to reduce bias is proposed.

Conclusion

AI in medical education shows considerable promise in domains of improving learners’ outcomes; this chapter rounds off its discussion with the role of AI in simulation methodologies and performance assessments for medical education, highlighting areas where it could augment how we deliver training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulton JF. History of medical education. Br Med J. 1953;2:457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heffernan GE. Discours de La Methode/Discourse on the method: a bilingual edition with an interpretive essay. Notre Dame: University of Notre Dame Press; 1994.

    Google Scholar 

  3. Vivarès F. Automata 1742. https://pictures.royalsociety.org/image-rs-11869

  4. Wood G. Living dolls: a magical history of the quest for mechanical life. The Guardian. 2002.

    Google Scholar 

  5. Stock J, Esposito M, Lanteri V. Urologic robotic surgery – current clinical urology. Humana Press; 2008.

    Book  Google Scholar 

  6. Fryer D, Marshall J. The motives of Jacques de Vaucanson. Technol Cult. 1979;20(2):257–69.

    Article  Google Scholar 

  7. Ashrafian H, Darzi A, Athanasiou T. A novel modification of the Turing test for artificial intelligence and robotics in healthcare. Int J Med Robot. 2015;11(1):38–43.

    Article  PubMed  Google Scholar 

  8. Callaway E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature. 2020;588:203–4.

    Article  CAS  PubMed  Google Scholar 

  9. Silver D, Huang A, Maddison C, et al. Mastering the game of go with deep neural networks and tree search. Nature. 2016;529:484–9.

    Article  CAS  PubMed  Google Scholar 

  10. Hunt E. Tay, Microsoft’s AI chatbot, gets a crash course in racism from Twitter. The Guardian. 2016.

    Google Scholar 

  11. Schröder H, Henke A, Stieger L, Beckers S, Biermann H, Rossaint R, Sopka S. Influence of learning styles on the practical performance after the four-step basic life support training approach – an observational cohort study. PLoS One. 2017;12(5):e0178210.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bergsteiner H, Avery G, Neumann R. Kolb’s experiential learning model: critique from a modelling perspective. Stud Contin Educ. 2010;32(1):29–46.

    Article  Google Scholar 

  13. Kolb D. Experiential learning: experience as the source of learning and development. Pearson FT Press PTG; 2015.

    Google Scholar 

  14. Honey P, Mumford A. The learning styles helper’s guide. Maidenhead: Peter Honey; 2000.

    Google Scholar 

  15. Honey P, Mumford A. The manual of learning styles. Maidenhead: Peter Honey; 1986.

    Google Scholar 

  16. Gregorc A, Butler K. Learning is a matter of style. Vocat Educ J. 1984;59(3):27–9.

    Google Scholar 

  17. Baig M, Ahmad M. Learning with a style: the role of learning styles and models in academic success. Eur Acad Res. 2016;4(8):6695–705.

    Google Scholar 

  18. Bajaj R, Sharma V. Smart education with artificial intelligence based determination of learning styles. Procedia Comput Sci. 2018;132:834–42.

    Article  Google Scholar 

  19. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan – a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bastardot F, Gachoud D. Visual diagnosis: between medical education and advances in artificial intelligence. Rev Med Suisse. 2019;15(672):2145–9.

    PubMed  Google Scholar 

  21. van der Niet A, Bleakley A. Where medical education meets artificial intelligence: ‘does technology care?’. Med Educ. 2020;55(1):30–6.

    Article  PubMed  Google Scholar 

  22. Lindqwister A, et al. AI-RADS: an artificial intelligence curriculum for residents. Acad Radiol. 2020. S1076-6332(20)30556-0.

    Google Scholar 

  23. Carin L. On artificial intelligence and deep learning within medical education. Acad Med. 2020;95(11S):S10.

    Article  PubMed  Google Scholar 

  24. Clancey W. GUIDON. J Comput-Based Instruct. 1983;10(1 & 2):8–15.

    Google Scholar 

  25. Bourlas P, Giakoumakis E, Koutsouris D, Papakonstantinou G, Tsanakas P. The CARDIO-LOGOS system for ECG training and diagnosis. Technol Health Care. 1996;3(4):279–85.

    Article  CAS  PubMed  Google Scholar 

  26. Voss G, et al. LAHYSTOTRAIN intelligent training system for laparoscopy and hysteroscopy. Stud Health Technol Inform. 2000;70:359–64.

    CAS  PubMed  Google Scholar 

  27. Stasiu RK, et al. Teaching of electrocardiogram interpretation guided by a tutorial expert. In: Proceedings 14th IEEE symposium on computer-based medical systems; 14th IEEE symposium on computer-based medical systems. 2001. p. 487–92.

    Google Scholar 

  28. Kintsch W. The potential of latent semantic analysis for machine grading of clinical case summaries. J Biomed Inform. 2002;35(1):3–7.

    Article  PubMed  Google Scholar 

  29. Caudell T, et al. Virtual patient simulator for distributed collaborative medical education. Anat Rec B New Anat. 270(1):23–9.

    Google Scholar 

  30. Crowley R, Medvedeva O. A general architecture for intelligent tutoring of diagnostic classification problem solving. In: AMIA annual symposium proceedings. AMIA Symposium; 2003. p. 185–9.

    Google Scholar 

  31. Michael J, Rovick A, Glass M, Zhou Y, Evens M. Learning from a computer tutor with natural language capabilities. Interact Learn Environ. 2003;11(3):233–62.

    Article  Google Scholar 

  32. McFadden P, Crim A. Comparison of the effectiveness of interactive didactic lecture versus online simulation-based CME programs directed at improving the diagnostic capabilities of primary care practitioners. J Contin Educ Heal Prof. 2016;36(1):32–7.

    Article  Google Scholar 

  33. Khumrin P, Ryan A, Judd T, Verspoor K. Diagnostic machine learning models for acute abdominal pain: towards an e-learning tool for medical students. Stud Health Technol Inform. 2017;245:447–51.

    PubMed  Google Scholar 

  34. Chen H, Gangaram V, Shih G. Developing a more responsive radiology resident dashboard. J Digit Imaging. 2019;32(1):81–90.

    Article  PubMed  Google Scholar 

  35. Cheng C, Chen CC, Fu CY, et al. Artificial intelligence-based education assists medical students’ interpretation of hip fracture. Insights Imaging. 2020;11:119.

    Article  PubMed  PubMed Central  Google Scholar 

  36. El Saadawi GM, Tseytlin E, Legowski E, et al. A natural language intelligent tutoring system for training pathologists: implementation and evaluation. Adv Health Sci Educ. 2008;13:709–22.

    Article  Google Scholar 

  37. Chieu VM, Luengo V, Vadcard L, Tonetti J. Student modeling in orthopedic surgery training: exploiting symbiosis between temporal Bayesian networks and fine-grained didactic analysis. Int J Artif Intell Educ. 2010;20:269–301.

    Google Scholar 

  38. Fernández-Alemán JLL-GL, González-Sequeros O, Jayne C, López-Jiménez JJ, Toval A. The evaluation of i-SIDRA – a tool for intelligent feedback – in a course on the anatomy of the locomotor system. Int J Med Inform. 2016;94:172–81.

    Article  PubMed  Google Scholar 

  39. Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Med Educ. 2019;5(2):e16048.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lang J, Repp H. Artificial intelligence in medical education and the meaning of interaction with natural intelligence – an interdisciplinary approach. GMS J Med Educ. 2020;37(6):Doc59.

    PubMed  PubMed Central  Google Scholar 

  41. Frize M, Frasson C. Decision-support and intelligent tutoring systems in medical education. Clin Invest Med. 2000;23(4):266–9.

    CAS  PubMed  Google Scholar 

  42. Masters K. Artificial intelligence in medical education. Med Teach. 2019;41(9):976–80.

    Article  PubMed  Google Scholar 

  43. Holden MS, Xia S, Lia H, et al. Machine learning methods for automated technical skills assessment with instructional feedback in ultrasound-guided interventions. Int J CARS. 2019;14:1993–2003.

    Article  Google Scholar 

  44. Mirchi N, Bissonnette V, Yilmaz R, Ledwos N, Winkler-Schwartz A, Del Maestro RF. The virtual operative assistant: an explainable artificial intelligence tool for simulation-based training in surgery and medicine. PLoS One. 2020;15(2):e0229596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bissonnette V, Mirchi N, Ledwos N, Alsidieri G, Winkler-Schwartz A, Del Maestro R. Artificial intelligence distinguishes surgical training levels in a virtual reality spinal task 2019 2019-12-4. e127 p.

    Google Scholar 

  46. Winkler-Schwartz ABV, Mirchi N, Ponnudurai N, Yilmaz R, Ledwos N, Siyar S, Azarnoush H, Karlik B, Del Maestro RF. Artificial intelligence in medical education: best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ. 2019;76:6.

    Article  Google Scholar 

  47. Wang Z, Majewicz F. Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery. Int J Comput Assist Radiol Surg. 2018;13(12):1959–70.

    Article  PubMed  Google Scholar 

  48. Haluck R, et al. Computers and virtual reality for surgical education in the 21st century. Arch Surg. 2000;135(7):786–92.

    Article  CAS  PubMed  Google Scholar 

  49. Rombeau JL, Goldberg A, Loveland-Jones C. Surgical mentoring: building tomorrow’s leaders. Heidelberg: Springer; 2010.

    Book  Google Scholar 

  50. Lyon P. A model of teaching and learning in the operating theatre. Med Educ. 2004;38(12):1278–87.

    Article  PubMed  Google Scholar 

  51. Haase J, et al. Neurosurgical training: more hours needed or a new learning culture? Surg Neurol. 2009;72(1):89–95.

    Article  PubMed  Google Scholar 

  52. Regelsberger J, et al. Training microneurosurgery -four years experiences with an in vivo model. Cent Eur Neurosurg. 2011;72(4):192–5.

    CAS  PubMed  Google Scholar 

  53. Rodriguez-Paz J, et al. Beyond “see one, do one, teach one”: toward a different training paradigm. Qual Saf Health Care. 2009;18(1):63–8.

    CAS  PubMed  Google Scholar 

  54. Sooriakumaran P. Is UK surgical training in crisis? A trainee’s perspective. Int J Surg. 2004;2(3):127.

    Article  CAS  PubMed  Google Scholar 

  55. Burkhardt J, et al. Neurosurgical education in Europe and the United States of America. Neurosurg Rev. 2010;33(4):409–17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Morgan MK, et al. The neurosurgical training curriculum in Australia and New Zealand is changing. Why? J Clin Neurosci. 2005;12(2):115–8.

    Article  PubMed  Google Scholar 

  57. Sure U, Miller D, Bozinov O. Neurosurgical training in Europe, problems and possible solutions. Surg Neurol. 2007;67(6):626–8.

    Article  PubMed  Google Scholar 

  58. Aggarwal R, Darzi A. Competency-based training and practice–what does it really mean? J Am Coll Surg. 2007;205(1):192–3.

    Article  PubMed  Google Scholar 

  59. Morris C. Facilitating learning in the workplace. Br J Hosp Med (Lond). 2010;71(1):48–50.

    Article  Google Scholar 

  60. Hamamcioglu MK, et al. A laboratory training model in fresh cadaveric sheep brain for microneurosurgical dissection of cranial nerves in posterior fossa. Br J Neurosurg. 2008;22(6):769–71.

    Article  PubMed  Google Scholar 

  61. Regelsberger J, et al. In vivo porcine training model for cranial neurosurgery. Neurosurg Rev. 2015;38(1):157–63.

    Article  PubMed  Google Scholar 

  62. Salma A, Chow A, Ammirati M. Setting up a microneurosurgical skull base lab: technical and operational considerations. Neurosurg Rev. 2011;34(3):317–26.

    Article  PubMed  Google Scholar 

  63. Takeuchi M, et al. A new training method to improve deep microsurgical skills using a mannequin head. Microsurgery. 2008;28(3):168–70.

    Article  PubMed  Google Scholar 

  64. Turan Suslu H, Tatarli N, Hicdonmez T, Borekci A. A laboratory training model using fresh sheep spines for pedicular screw fixation. Br J Neurosurg. 2012;26(2):252–4.

    Article  PubMed  Google Scholar 

  65. Amr A, et al. Testing the efficacy of simulation in neurosurgical education: first results of the SENSE trial. Neurosurgery. 2017;64:223–4.

    Article  Google Scholar 

  66. Ganju A, et al. The role of simulation in neurosurgical education: a survey of 99 United States neurosurgery program directors. World Neurosurg. 2013;80(5):1–8.

    Article  Google Scholar 

  67. Berhouma M, et al. Shortening the learning curve in endoscopic endonasal skull base surgery: a reproducible polymer tumor model for the trans-sphenoidal trans-tubercular approach to retro-infundibular tumors. Clin Neurol Neurosurg. 2013;115(9):1635–41.

    Article  PubMed  Google Scholar 

  68. Menovsky T. A human skull cast model for training of intracranial microneurosurgical skills. Microsurgery. 2000;20(7):311–3.

    Article  CAS  PubMed  Google Scholar 

  69. Choudhury N, et al. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013;80(5):9–19.

    Article  Google Scholar 

  70. Paloc C, et al. Virtual reality surgical training and assessment system. Int Congr Ser. 2001;1230:210–7.

    Article  Google Scholar 

  71. Robison RA, Liu CY, Apuzzo ML. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg. 2011;76(5):419–30.

    Article  PubMed  Google Scholar 

  72. Schmitt PJ, Agarwal N, Prestigiacomo CJ. From planes to brains: parallels between military development of virtual reality environments and virtual neurological surgery. World Neurosurg. 2012;78(3–4):214–9.

    Article  PubMed  Google Scholar 

  73. Jiang F, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Beck J, et al. Applications of AI in education. Crossroads. 1996;3(1):11–5.

    Article  Google Scholar 

  75. Katz A, Ochs J. Profiling student activities with the Smithtown discovery world program. Soc Sci Comput Rev. 1993;11(3):366–78.

    Article  Google Scholar 

  76. El Agha M, et al. SQL tutor for novice students. Int J Acad Inf Syst Res. 2018;2(2):1–7.

    Google Scholar 

  77. Qwaider S, Abu-Naser SS. Excel intelligent tutoring system. Int J Acad Inf Syst Res. 2018;2(2):8–18.

    Google Scholar 

  78. VanLehn K, Lynch C, Schultz K, Shapiro JA, Shelby RH, Taylor L, et al. The Andes physics tutoring system: lessons learned. Int J Artif Intell Educ. 2005;15(3):147–204.

    Google Scholar 

  79. VanLehn K, van de Sande B, Shelby R, Gershman S. The Andes physics tutoring system: an experiment in freedom. In: Nkambou R, Bourdeau J, Mizoguchi R, editors. Advances in intelligent tutoring systems studies in computational intelligence. Berlin/Heidelberg: Springer; 2010. p. 308.

    Google Scholar 

  80. Luckin R, et al. Intelligence unleashed: an argument for AI in education. London: Pearson; 2016.

    Google Scholar 

  81. Porayska-Pomsta K. AI in Education as a methodology for enabling educational evidence-based practice. Workshop on Les Contes du Mariage: should AI stay married to Ed? 2015. p. 52–61.

    Google Scholar 

  82. Koedinger KR, et al. Intelligent tutoring goes to school in the big city. Int J Artif Intell Educ (IJAIED). 1997;8:30–43.

    Google Scholar 

  83. Office MN. MIT reshapes itself to shape the future 2018. http://news.mit.edu/2018/mit-reshapes-itself-stephen-schwarzman-college-of-computing-1015

  84. Office ON. Oxford unveils plans for new graduate college 2018. http://www.ox.ac.uk/news/2018-12-07-oxford-unveils-plans-new-graduate-college

  85. Bhutani A, Wadhwani P. Artificial Intelligence (AI) in education market size 2018. https://www.gminsights.com/industry-analysis/artificial-intelligence-ai-in-education-market

  86. Tuomi I. JRC science for policy report: the impact of artificial intelligence on learning, teaching, and education. Joint Research Centre (European Commission). 2018.

    Google Scholar 

  87. Mitrovic A, et al. ASPIRE: an authoring system and deployment environment for constraint-based tutors. Int J Artif Intell Educ (IJAIED). 2009;19(2):155–88.

    Google Scholar 

  88. Evens M, et al. CIRCSIM-tutor: an intelligent tutoring system using natural language dialogue. In: Proceedings of the fifth conference on applied natural language processing: descriptions of system demonstrations and videos: Association for Computational Linguistics. p. 13–4.

    Google Scholar 

  89. Duong M, et al. Artificial intelligence for precision education in radiology. Br J Radiol. 2019;92(1103):20190389.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lakhani P, et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol. 2018;15:350–9.

    Article  PubMed  Google Scholar 

  91. Davids J, Manivannan S, Darzi A, et al. Simulation for skills training in neurosurgery: a systematic review, meta-analysis, and analysis of progressive scholarly acceptance. Neurosurg Rev. 2020.

    Google Scholar 

  92. Birkmeyer J, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.

    Article  CAS  PubMed  Google Scholar 

  93. Martin J, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84:273–8.

    CAS  PubMed  Google Scholar 

  94. Reznick R, et al. Testing technical skill via an innovative “bench station” examination. Am J Surg. 1997;173:226–30.

    Article  CAS  PubMed  Google Scholar 

  95. Goh A, et al. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.

    Article  PubMed  Google Scholar 

  96. Vassiliou M, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005;190:107–13.

    Article  PubMed  Google Scholar 

  97. Insel A, et al. The development of an objective model to assess arthroscopic performance. J Bone Joint Surg Am. 2009;91(9):2287–95.

    Article  PubMed  Google Scholar 

  98. Fard M, et al. Machine learning approach for skill evaluation in robotic-assisted surgery. In: Proceedings of the world congress on engineering and computer science. 2016.

    Google Scholar 

  99. LeCun Y, et al. Deep learning. Nature. 2015;521:436–44.

    Article  CAS  PubMed  Google Scholar 

  100. Fawaz H, et al. Evaluating surgical skills from kinematic data using convolutional neural networks. In: MICCAI 2018: Medical image computing and computer assisted intervention, vol. 11073. 2018. p. 214–21.

    Google Scholar 

  101. Hung A, et al. Utilizing machine learning and automated performance metrics to evaluate robot-assisted radical prostatectomy performance and predict outcomes. J Endourol. 2018;32(5):438–44.

    Article  PubMed  Google Scholar 

  102. Hung A, et al. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019;124(3):487–95.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jin A, et al. Tool detection and operative skill assessment in surgical videos using region-based convolutional neural networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). 2018. p. 691–9.

    Google Scholar 

  104. Gao Y, et al. JHU-ISI Gesture and Skill Assessment Working Set ( JIGSAWS ): a surgical activity dataset for human motion modeling. 2014.

    Google Scholar 

  105. Twinanda A, et al. EndoNet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans Med Imaging. 2017;36:86–97.

    Article  PubMed  Google Scholar 

  106. Kitaguchi D, et al. Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence: experimental research. Int J Surg. 2020;79:88–94.

    Article  PubMed  Google Scholar 

  107. Pesheva E, Menting A. HMS communications; Science and Technology; [Internet]. In: Gazette TH, editor. The Harvard Gazette. 2019. [cited 2021]. https://news.harvard.edu/gazette/story/2019/04/at-harvard-adding-ai-to-m-d/

  108. Salt J, Harik P, Barone MA. Leveraging natural language processing: toward computer-assisted scoring of patient notes in the USMLE step 2 clinical skills exam. Acad Med. 2019;94(3):314–6.

    Article  PubMed  Google Scholar 

  109. Wartman SA, Combs CD. Reimagining medical education in the age of AI. AMA J Ethics. 2019;21(2):E146–52.

    Article  PubMed  Google Scholar 

  110. Desk AN. CloudMedx Clinical AI outperforms human doctors on a US medical exam: AI Authority; 2019. https://aithority.com/machine-learning/neural-networks/deep-learning/cloudmedx-clinical-ai-outperforms-human-doctors-on-a-us-medical-exam/

  111. O’Sullivan S, Nevejans N, Allen C, et al. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int J Med Robotics Comput Assist Surg. 2019;15:e1968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Davids .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davids, J., Lam, K., Nimer, A., Gianarrou, S., Ashrafian, H. (2022). AIM in Medical Education. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics