Skip to main content

AIM in Neurodegenerative Diseases: Parkinson and Alzheimer

  • Reference work entry
  • First Online:
Artificial Intelligence in Medicine
  • 350 Accesses

Abstract

Parkinson’s disease and dementia are two of the most debilitating neurodegenerative disorders to ever plague humankind. They cause significant biopsychosocial and economic burden on society and affect the community and carers in particular, necessitating holistic multidisciplinary care.

The rise of artificial intelligence for medical applications in recent years, including disease prediction, diagnostics, disease progression monitoring, risk stratification, and prognostication, has also seen the development of applications for Parkinson’s disease and dementia. This chapter explores the use of artificial intelligence and machine learning in terms of the diagnosis, management, and prognosis predictions for these two neurodegenerative conditions.

We discuss the medical and the surgical applications of AI for Parkinson’s disease and also highlight the artificial intelligent models that have been used for various forms of dementia. The chapter begins by introducing the reader to the impacts of AI on dementia diagnosis, treatment, and prognosis, extending the discussion to dementia with Lewy body disease before tackling specific aspects of AI related to Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moyle W. The promise of technology in the future of dementia care. Nat Rev Neurol. 2019;15(6):353–9.

    PubMed  Google Scholar 

  2. Johnston TH, Lacoste AMB, Visanji NP, Lang AE, Fox SH, Brotchie JM. Repurposing drugs to treat L-DOPA-induced dyskinesia in Parkinson’s disease. Neuropharmacology. 2019;147:11–27.

    CAS  PubMed  Google Scholar 

  3. Belic M, Bobic V, Badza M, Solaja N, Duric-Jovicic M, Kostic VS. Artificial intelligence for assisting diagnostics and assessment of Parkinson’s disease: a review. Clin Neurol Neurosurg. 2019;105442:184.

    Google Scholar 

  4. Battista P, Salvatore C, Berlingeri M, Cerasa A, Castiglioni I. Artificial intelligence and neuropsychological measures: the case of Alzheimer’s disease. Neurosci Biobehav Rev. 2020;114:211–28.

    PubMed  Google Scholar 

  5. Chiu PY, Wei CY. A history-based computerized questionnaire for the diagnosis of severity and subtypes of dementia: design and verify. Alzheimer Dement. 2019;15(7 Supplement):P688–P9.

    Google Scholar 

  6. Fisher CK, Smith AM, Walsh JR. Machine learning for comprehensive forecasting of Alzheimer’s disease progression. Sci Rep. 2019;9(1):13622.

    PubMed  PubMed Central  Google Scholar 

  7. Thabtah F, Mampusti E, Peebles D, Herradura R, Varghese J. A mobile-based screening system for data analyses of early dementia traits detection. J Med Syst. 2020;44(1):24.

    Google Scholar 

  8. Brzezicki MA, Kobetic MD, Neumann S, Pennington C. Diagnostic accuracy of frontotemporal dementia. An artificial intelligence-powered study of symptoms, imaging and clinical judgement. Adv Med Sci. 2019;64(2):292–302.

    PubMed  Google Scholar 

  9. Soucy JP, Chevrefils C, Sylvestre JP, Arbour JD, Rheaume MA, Beaulieu S, et al. An amyloid ligand-free optical retinal imaging method to predict cerebral amyloid pet status. Alzheimer Dement. 2018;14(7 Supplement):P158.

    Google Scholar 

  10. Chen C, Cheung C. Retinal imaging for dementia. J Neurol Sci. 2019;405(Supplement):19.

    Google Scholar 

  11. Cheung C, Chan V, Mok V, Chen C, Wong T. Potential retinal biomarkers for dementia: what is new? Curr Opin Neurol. 2019;32(1):82–91.

    CAS  PubMed  Google Scholar 

  12. DeBuc DC. Identification of retinal biomarkers in Alzheimer’s disease using optical coherence tomography: recent insights, challenges and opportunities. Alzheimer Dement. 2019;15(7 Supplement):P156–P7.

    Google Scholar 

  13. Dumitrascu O, Koronyo-Hamaoui M. Retinal vessel changes in cerebrovascular disease. Curr Opin Neurol. 2020;33(1):87–92.

    PubMed  Google Scholar 

  14. Huang W, Luo M, Liu X, Zhang P, Ding H, Xue W, et al. Arterial spin labeling images synthesis from sMRI using unbalanced deep discriminant learning. IEEE Trans Med Imaging. 2019;38(10):2338–51.

    PubMed  Google Scholar 

  15. Lau A, Mok V, Lam B, Wong A, Lee J, Lai M, et al. Automated retinal image analysis to detect white matter hyperintensities in stroke- and dementia-free healthy subjects – a cross-validation study. Eur Stroke J. 2018;3(1 Supplement 1):488.

    Google Scholar 

  16. Lau AY, Mok V, Lee J, Fan Y, Zeng J, Lam B, et al. Retinal image analytics detects white matter hyperintensities in healthy adults. Ann Clin Transl Neurol. 2019;6(1):98–105.

    PubMed  Google Scholar 

  17. Nunes A, Silva G, Duque C, Januário C, Santana I, Ambrósio AF, et al. Retinal texture biomarkers may help to discriminate between Alzheimer’s, Parkinson’s, and healthy controls. PLoS One. 2019;14(6):e0218826.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Park CH, Lee PH, Lee SK, Chung SJ, Shin NY. The diagnostic potential of multimodal neuroimaging measures in Parkinson’s disease and atypical parkinsonism. Brain Behav. 2020;10(11):e01808.

    PubMed  PubMed Central  Google Scholar 

  19. Sharafi SM, Sylvestre J-P, Chevrefils C, Soucy J-P, Beaulieu S, Pascoal TA, et al. Vascular retinal biomarkers improves the detection of the likely cerebral amyloid status from hyperspectral retinal images. Alzheimers Dement. 2019;5:610–7.

    Google Scholar 

  20. Snyder PJ, Alber J, Alt C, Bain LJ, Bouma BE, Bouwman FH, et al. Retinal imaging in Alzheimer’s and neurodegenerative diseases. Alzheimers Dement. 2021;17(1):103–11.

    CAS  PubMed  Google Scholar 

  21. Tian J, Smith G, Guo H, Liu B, Pan Z, Wang Z, et al. Modular machine learning for Alzheimer’s disease classification from retinal vasculature. Sci Rep. 2021;11(1):238.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wagner SK, Fu DJ, Faes L, Liu X, Huemer J, Khalid H, et al. Insights into systemic disease through retinal imaging-based oculomics. Transl Vis Sci Technol. 2020;9(2):6.

    PubMed  PubMed Central  Google Scholar 

  23. Williams C, Parmentier F, Etcheto A, Missling C, Afshar M. Levels of gut microbiota potentially regulated through anti-inflammatory effect identified as associated to response to blarcamesine (ANAVEX2-73) in Alzheimer’s disease patients in 2-year interim clinical data using KEM artificial intelligence analysis. J Prevent Alzheimers Dis. 2019;6(Supplement 1):S98.

    Google Scholar 

  24. Bayen E, Nickels S, Xiong G, Jacquemot J, Agrawal P, Bayen A, et al. Real-time video detection of falls in dementia managed care: a significant reduction of time until assistance and time on the ground in fallers thanks to safely you technology. Alzheimers Dement. 2019;15(7 Supplement):P457.

    Google Scholar 

  25. Bayen E, Jacquemot J, Netscher G, Agrawal P, Noyce LT, Bayen A. Reducing the frequency and impact of falls in dementia managed care through video monitoring and incident review. Alzheimers Dement. 2018;14(7 Supplement):P188.

    Google Scholar 

  26. Kalafatis C, Modarres MH, Marefat H, Khanbagi M, Karimi H, Vahabi Z, et al. Employing artificial intelligence in the development of a self-administered, computerised cognitive assessment for the assessment of neurodegeneration. Alzheimers Dement. 2019;15(7 Supplement):P1355–P6.

    Google Scholar 

  27. Umeda-Kameyama Y, Kameyama M, Tanaka T, Son B-K, Kojima T, Fukasawa M, et al. Screening of Alzheimer’s disease by facial complexion using artificial intelligence. Aging. 2021;13(2):1765–72.

    PubMed  PubMed Central  Google Scholar 

  28. Coulson JSSHHHH. An expert system for the management of clients with vocally disruptive behaviors in dementia. Educ Gerontol. 2000;26(4):401–8.

    Google Scholar 

  29. Rutkowski T, Abe MS, Koculak M, Otake-Matsuura M. Classifying mild cognitive impairment from behavioral responses in emotional arousal and valence evaluation task – AI approach for early dementia biomarker in aging societies. Annu Int Conf IEEE Eng Med Biol Soc. 2020;2020:5537–43. https://doi.org/10.1109/EMBC44109.2020.9175805. PMID: 33019233.

    Article  PubMed  Google Scholar 

  30. Gardner J. Artificial intelligence and machine learning algorithms for informing the diagnostic process of mild cognitive impairment and dementia. Arch Clin Neuropsychol. 2019;34(6):838.

    Google Scholar 

  31. Vahia I, Kabelac Z, Munir U, Hoti K, May R, Monette P, et al. Identification and evaluation of behavioral symptoms in dementia using passive radio sensing and machine learning. Am J Geriatr Psychiatr. 2019;27(3 Supplement):S126–S7.

    Google Scholar 

  32. Thabtah F, Peebles D, Retzler J, Hathurusingha C. Dementia medical screening using mobile applications: a systematic review with a new mapping model. J Biomed Inform. 2020;103573:111.

    Google Scholar 

  33. Grossi E, Massini G, Buscema M, Savare R, Maurelli G. Two different Alzheimer diseases in men and women: clues from advanced neural networks and artificial intelligence. Gend Med. 2005;2(2):106–17.

    PubMed  Google Scholar 

  34. Shin J, Park H, Park C, Hwang J, You SH. Effects of artificial intelligence (AI) based integrated robotic-assisted gait, music, and light Brain fitness training (BRAIN-FIT) on electroencephalography (EEG) brain mapping of frontal alpha asymmetry (FA) and associated psychological behaviors in anxiety and depression. IBRO Rep. 2019;6(Supplement):S288.

    Google Scholar 

  35. Finkbeiner S. Harnessing human brain cell models with robotics and deep learning to discover causes and treatments for neurodegenerative disease. Acta Physiol. 2019;227(Supplement 719):17–8.

    Google Scholar 

  36. Liu X, Chen K, Wu T, Weidman D, Lure F, Li J. Use of multimodality imaging and artificial intelligence for diagnosis and prognosis of early stages of Alzheimer’s disease. Transl Res. 2018;194:56–67.

    PubMed  PubMed Central  Google Scholar 

  37. Wee C-Y, Yap P-T, Zhang D, Denny K, Browndyke JN, Potter GG, et al. Identification of MCI individuals using structural and functional connectivity networks. NeuroImage. 2012;59(3):2045–56.

    PubMed  Google Scholar 

  38. Leung L, Fu S, Nelson J, Kallmes D, Luetmer P, Liu H, et al. Abstract 135: examining the information loss between neuroimages and neuroimaging reports for detection of silent brain infarcts and white matter disease using artificial intelligence technologies. Stroke. 2020;51(Suppl_1):A135.

    Google Scholar 

  39. Marzban EN, Teipel SJ, Buerger K, Fliessbach K, Heneka MT, Kilimann I, et al. Explainable convolutional networks and multimodal imaging data: the next step towards using artificial intelligence as diagnostic tool for early detection of Alzheimer’s disease. Alzheimers Dement. 2019;15(7 Supplement):P1083–P4.

    Google Scholar 

  40. McLeod JG. Pathophysiology of Parkinson’s disease. Aust New Zeal J Med. 1971;1:19–23. https://doi.org/10.1111/j1445-59941971tb02561x.

    Article  Google Scholar 

  41. Dorsey ER, Omberg L, Waddell E, Adams JL, Adams R, Ali MR, et al. Deep phenotyping of Parkinson’s disease. J Parkinsons Dis. 2020;10(3):855–73.

    PubMed  PubMed Central  Google Scholar 

  42. Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, et al. Pathologic accumulation of α-Synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol. 2012;69(10):1326–31.

    PubMed  PubMed Central  Google Scholar 

  43. Iizuka T, Kameyama M. Spatial metabolic profiles to discriminate dementia with Lewy bodies from Alzheimer disease. J Neurol. 2020;267(7):1960–9.

    PubMed  Google Scholar 

  44. Chiu PY, Hung GU, Wei CY, Tzeng RC, Pai MC. Freezing of speech single questionnaire as a screening tool for cognitive dysfunction in patients with dementia with Lewy bodies. Front Aging Neurosci. 2020;12:65.

    PubMed  PubMed Central  Google Scholar 

  45. Williams S, Zhao Z, Hafeez A, Wong DC, Relton SD, Fang H, et al. The discerning eye of computer vision: can it measure Parkinson’s finger tap bradykinesia? J Neurol Sci. 2020;117003:416.

    Google Scholar 

  46. Arroyo-Gallego T, Ledesma-Carbayo MJ, Butterworth I, Matarazzo M, Montero-Escribano P, Puertas-Martin V, et al. Detecting motor impairment in early Parkinson’s disease via natural typing interaction with keyboards: validation of the neuroQWERTY approach in an uncontrolled at-home setting. J Med Internet Res. 2018;20(3):e89.

    PubMed  PubMed Central  Google Scholar 

  47. Shen B, Peng F, Xie Y, Chen Y, Tang H, Lin S, et al. A pilot study to evaluate the severity of motor dysfunction in patients with Parkinson’s disease based on AI non-wearable motion capture of video analysis. Mov Disord Clin Pract. 2019;6(Supplement 1):S73–S4.

    Google Scholar 

  48. Bazgir O, Habibi SH, Palma L, Pierleoni P, Nafees S. A classification system for assessment and home monitoring of tremor in patients with Parkinson’s disease. J Med Signals Sens. 2018;8:65–72.

    PubMed  PubMed Central  Google Scholar 

  49. Arora S, Venkataraman V, Zhan A, Donohue S, Biglan KM, Dorsey ER, Little MA. Detecting and monitoring the symptoms of Parkinson’s disease using smartphones: a pilot study. Parkinsonism Relat Disord. 2015;21:650–3.

    CAS  PubMed  Google Scholar 

  50. Wahid F, Begg RK, Hass CJ, Halgamuge S, Ackland DC. Classification of Parkinson’s disease gait using spatial-temporal gait features. IEEE J Biomed Health Inform. 2015;19:1794–802.

    PubMed  Google Scholar 

  51. Ahlrichs C, Samà A, Lawo M, et al. Detecting freezing of gait with a tri-axial accelerometer in Parkinson’s disease patients. Med Biol Eng Comput. 2016;54:223–33.

    PubMed  Google Scholar 

  52. Cuzzolin F, Sapienza M, Esser P, Saha S, Franssen MM, Collett J, Dawes H. Metric learning for Parkinsonian identification from IMU gait measurements. Gait Posture. 2017;54:127–32.

    PubMed  Google Scholar 

  53. Arora S, Venkataraman V, Donohue S, Biglan KM, Dorsey ER, Little MA. High accuracy discrimination of Parkinson’s disease participants from healthy controls using smartphones. In: Proceedings of the ICASSP, IEEE international conference on acoustics, speech and signal processing – proceedings, 2014.

    Google Scholar 

  54. Zeng W, Liu F, Wang Q, Wang Y, Ma L, Zhang Y. Parkinson’s disease classification using gait analysis via deterministic learning. Neurosci Lett. 2016;633:268–78.

    CAS  PubMed  Google Scholar 

  55. Chomiak T, Xian W, Pei Z, Hu B. A novel single-sensor-based method for the detection of gait-cycle breakdown and freezing of gait in Parkinson’s disease. J Neural Transm. 2019;126(8):1029–36.

    PubMed  Google Scholar 

  56. Adams WR. High-accuracy detection of early Parkinson’s disease using multiple characteristics of finger movement while typing. PLoS One. 2017;12:e0188226.

    PubMed  PubMed Central  Google Scholar 

  57. Fraiwan L, Khnouf R, Mashagbeh AR. Parkinsons disease hand tremor detection system for mobile application. J Med Eng Technol. 2016;40:127–34.

    PubMed  Google Scholar 

  58. Khan T, Nyholm D, Westin J, Dougherty M. A computer vision framework for finger-tapping evaluation in Parkinson’s disease. Artif Intell Med. 2014;60(1):27–40.

    PubMed  Google Scholar 

  59. Gao C, Smith S, Lones M, Jamieson S, Alty J, Cosgrove J, Zhang P, Liu J, Chen Y, Du J, et al. Objective assessment of bradykinesia in Parkinson’s disease using evolutionary algorithms: clinical validation. Transl Neurodegener. 2018;7:18.

    PubMed  PubMed Central  Google Scholar 

  60. Roy S, Cole BT, Gilmore LD, De Luca CJ, Thomas CA, Saint-Hilaire MM, Nawab SH. High-resolution tracking of motor disorders in Parkinson’s disease during unconstrained activity. Mov Disord. 2013;28(8):1080–7.

    PubMed  PubMed Central  Google Scholar 

  61. Caramia C, Torricelli D, Schmid M, Munoz-Gonzalez A, Gonzalez-Vargas J, Grandas F, Pons JL. IMU-based classification of Parkinson’s disease from gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Inform. 2018;22(6):1765–74.

    PubMed  Google Scholar 

  62. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, Akay M, Dy J, Welsh M, Bonato P. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans Inf Technol Biomed. 2009;13:864–73.

    PubMed  PubMed Central  Google Scholar 

  63. Soria-Frisch A, Kroupi E, Castellano M, Ibanez D, Montplaisir J, Jean-Francois G, et al. Comparison of EEG-based classifier performance for PD prodromal analysis. Neurodegener Dis. 2017;17(Supplement 1):1570.

    Google Scholar 

  64. Alford SH, Visanji NP, Lacoste AMB, Madan P, Buleje I, Han Y, et al. Using artificial intelligence and realworld data to identify drugs to repurpose for Parkinson’s disease. Pharmacoepidemiol Drug Saf. 2019;28(Supplement 2):131.

    Google Scholar 

  65. Neumann W-J, Turner RS, Blankertz B, Mitchell T, Kuhn AA, Richardson RM. Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics. 2019;16(1):105–18.

    PubMed  PubMed Central  Google Scholar 

  66. Rowland NC, Sammartino F, Lozano AM. Advances in surgery for movement disorders. Mov Disord. 2017;32(1):5–10.

    PubMed  Google Scholar 

  67. Gratwicke J, Zrinzo L, Kahan J, et al. Bilateral deep brain stimulation of the nucleus basalis of Meynert for Parkinson disease dementia: a randomized clinical trial. JAMA Neurol. 2018;75(2):169–78. https://doi.org/10.1001/jamaneurol20173762.

    Article  PubMed  Google Scholar 

  68. Limousin PKP, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid A-L. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 1998;339:1105–11.

    CAS  PubMed  Google Scholar 

  69. Hariz MI. Complications of deep brain stimulation surgery. Mov Disord. 2002;17:S162–6. https://doi.org/10.1002/mds10159.

    Article  PubMed  Google Scholar 

  70. Phokaewvarangkul O, Boonpang K, Bhidayasiri R. Subthalamic deep brain stimulation aggravates speech problems in Parkinson’s disease: objective and subjective analysis of the influence of stimulation frequency and electrode contact location. Parkinsonism Relat Disord. 2019;66:110–6. https://doi.org/10.1016/jparkreldis201907020. Epub 2019 July 16 PMID: 31327627.

    Article  PubMed  Google Scholar 

  71. Rama Raju V. Effectiveness of lead position with microelectrode recording based support vector machine for characterizing the sub-cortical-structures via deep brain stimulus in Parkinson’s disease. Mov Disord. 2020;35(Suppl 1):S370.

    Google Scholar 

  72. Fiske A, Henningsen P, Buyx A. Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res. 2019;21(5):e13216.

    PubMed  PubMed Central  Google Scholar 

  73. Melzer TRSM, Keenan RJ, Myall DJ, MacAskill MR, Pitcher TL, Livingston L, Grenfell S, Horne K-L, Young BN, Pascoe MJ, Almuqbel MM, Wang J, Marsh SH, Miller DH, Dalrymple-Alford JC, Anderson TJ. Beta amyloid deposition is not associated with cognitive impairment in Parkinson’s disease. Front Neurol. 2019;10:391. https://doi.org/10.3389/fneur201900391.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Davids .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Davids, J., Ashrafian, H. (2022). AIM in Neurodegenerative Diseases: Parkinson and Alzheimer. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-64573-1_190

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64573-1_190

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64572-4

  • Online ISBN: 978-3-030-64573-1

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics