Skip to main content

Photovoltaic Maximum Power Point Trackers: An Overview

  • Chapter
  • First Online:
Advanced Technologies for Solar Photovoltaics Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The generated power from the photovoltaic (PV) array is a function in its terminal voltage. The relation between the generated power and the terminal voltage of the PV array is called the P–V curve. The point corresponding to the highest generated power in this relation is called maximum power point (MPP). This relation has only one peak in the case of uniformly distributed irradiance over the PV array. Meanwhile, it has multiple peaks in the case of partial shading conditions (PSC). The one with the highest power is called global peak (GP) and the other peaks are called local peaks (LPs). The control system should track this point to improve the efficiency of the PV system by extracting the maximum available power from the PV array. The controller used to track this point is called the maximum power point tracker (MPPT). Traditional MPPTs such as hill-climbing or incremental conductance are adequate to track the MPP in the case of uniform irradiance, but it may stick at one of the LPs in the case of PSC. For this reason an unlimited number of MPPT techniques are introduced in the literature to track this point. This chapter introduces an overview of the PV maximum power point trackers (MPPT) techniques. The classifications of MPPT of the PV system is introduced in detail in this chapter. The operating principles, advantages, and disadvantages of each technique are introduced in detail for famous and important techniques and in brief for the less famous techniques or the techniques that are not showing good performance in tracking the MPP. A comprehensive comparison between these techniques is presented in detail in this chapter. Important recommendations and conclusions are introduced at the end of this chapter to show the advantages and disadvantages of these PV MPPT techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Romero-Cadaval E et al (2013) Grid-connected photovoltaic generation plants: components and operation. IEEE Indus Electron Mag 7(3):6–20

    Google Scholar 

  2. https://www.solarnovus.com/strong-growth-trends-in-world-solar-installations_N12178.html

  3. https://www.iea.org/fuels-and-technologies/solar

  4. Kumar N et al A state of the art review on conventional, soft computing, and hybrid techniques for shading mitigation in photovoltaic applications. Int Trans Electric Energy Syst: e12420.

    Google Scholar 

  5. Eltamaly AM, Farh HM, Al-Saud MS (2019) Grade point average assessment for metaheuristic GMPP techniques of partial shaded PV systems. IET Renew Power Gener 13(8):1215–1231

    Google Scholar 

  6. Eltamaly AM, Farh HM, Othman MF (2018) A novel evaluation index for the photovoltaic maximum power point tracker techniques. Solar Energy 174:940–956

    Google Scholar 

  7. Yang B et al (2020) Comprehensive overview of maximum power point tracking algorithms of PV systems under partial shading condition. J Clean Product 121983.

    Google Scholar 

  8. Javed MY et al (2019) A comprehensive review on a PV based system to harvest maximum power. Electronics 8(12):1480

    Google Scholar 

  9. Ram JP, Babu TS, Rajasekar N (2017) A comprehensive review on solar PV maximum power point tracking techniques. Renew Sustain Energy Rev 67:826–847

    Google Scholar 

  10. Farh HM, Eltamaly AM (2020) Maximum power extraction from the photovoltaic system under partial shading conditions. In: Modern maximum power point tracking techniques for photovoltaic energy systems. Springer, Cham, pp 107–129

    Google Scholar 

  11. Bingöl, Okan, and Burçin ÖZKAYA (2019) A comprehensive overview of soft computing based MPPT techniques for partial shading conditions in PV systems. Mühendislik Bilimleri ve Tasarım Dergisi 7(4):926–939

    Google Scholar 

  12. Eltamaly AM (2014) Pairing between sites and wind turbines for Saudi Arabia Sites. Arab J Sci Eng 39(8):6225–6233

    Article  Google Scholar 

  13. Seyedmahmoudian M et al (2016) State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems—a review. Renew Sustain Energy Rev 64:435–455

    Article  Google Scholar 

  14. Baba AO, Liu G, Chen X (2020) Classification and evaluation review of maximum power point tracking methods. Sustain Futures 2:100020.

    Google Scholar 

  15. Pathak PK, Yadav AK, Alvi PA (2020) Advanced solar MPPT techniques under uniform and non-uniform irradiance: a comprehensive review. J Solar Energy Eng 142(4)

    Google Scholar 

  16. Eltamaly AM (2013) Design and simulation of wind energy system in Saudi Arabia. In: 2013 4th International conference on intelligent systems, modelling and simulation. IEEE

    Google Scholar 

  17. Farh HM, Othman MF, Eltamaly AM (2017) Eltamaly. Maximum power extraction from grid-connected PV system. In: 2017 Saudi Arabia smart grid (SASG). IEEE

    Google Scholar 

  18. Rezk H, Eltamaly AM (2015) A comprehensive comparison of different MPPT techniques for photovoltaic systems. Solar Energy 112:1–11

    Article  Google Scholar 

  19. Bawah U, Addoweesh KE, Eltamaly AM (2013) Comparative study of economic viability of rural electrification using renewable energy resources versus diesel generator option in Saudi Arabia. J Renew Sustain Energy 5(4):042701

    Article  Google Scholar 

  20. El-Tamaly HH, El-Tamaly AM, El-Baset Mohammed AA (2003) Design and control strategy of utility interfaced PV/WTG hybrid system. In: The ninth international middle east power system conference, MEPCON

    Google Scholar 

  21. Boztepe M et al (2013) Global MPPT scheme for photovoltaic string inverters based on restricted voltage window search algorithm. IEEE Trans Indus Electron 61(7):3302–3312

    Google Scholar 

  22. Kermadi M et al (2018) An effective hybrid maximum power point tracker of photovoltaic arrays for complex partial shading conditions. IEEE Trans Indus Electron 66(9):6990–7000

    Google Scholar 

  23. Furtado AMS et al (2017) A reduced voltage range global maximum power point tracking algorithm for photovoltaic systems under partial shading conditions. IEEE Trans Indus Electron 65(4):3252–3262

    Google Scholar 

  24. Eltamaly AM (2018) Performance of MPPT techniques of photovoltaic systems under normal and partial shading conditions. In: Advances in renewable energies and power technologies. Elsevier, pp 115–161

    Google Scholar 

  25. Mahmoud YA, Xiao W, Zeineldin HH (2012) A parameterization approach for enhancing PV model accuracy. IEEE Trans Indus Electron 60(12):5708–5716

    Article  Google Scholar 

  26. Eltamaly AM (2015) Performance of smart maximum power point tracker under partial shading conditions of PV systems. In: 2015 IEEE International conference on smart energy grid engineering (SEGE). IEEE

    Google Scholar 

  27. Ishaque K, Salam Z (2011) A comprehensive MATLAB Simulink PV system simulator with partial shading capability based on two-diode model. Solar Energy 85(9):2217–2227

    Article  Google Scholar 

  28. Ma T, Yang H, Lin L (2014) Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays. Solar Energy 100:31–41

    Article  Google Scholar 

  29. Eltamaly AM, Farh HM PV Characteristics, performance and modelling. In: Modern maximum power point tracking techniques for photovoltaic energy systems. Springer, Cham, pp 31–63

    Google Scholar 

  30. Khanna V et al (2015) A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew Energy 78:105–113

    Google Scholar 

  31. Eltamaly AM (2011) Modeling of fuzzy logic controller for photovoltaic maximum power point tracker. Trends Electric Eng 1(2)

    Google Scholar 

  32. Eltamaly AM, Abdelaziz AY (eds) (2019) Modern maximum power point tracking techniques for photovoltaic energy systems. Springer

    Google Scholar 

  33. Eltamaly AM (2015) Performance of smart maximum power point tracker under partial shading conditions of photovoltaic systems. J Renew Sustain Energy 7(4):043141

    Google Scholar 

  34. Zhang Q et al (2009) A novel topology for solving the partial shading problem in photovoltaic power generation system. In: 2009 IEEE 6th international power electronics and motion control conference. IEEE

    Google Scholar 

  35. Farh HM, Eltamaly AM, Al-Saud MS (2019) Interleaved boost converter for global maximum power extraction from the photovoltaic system under partial shading. IET Renew Power Gener 13(8):1232–1238

    Google Scholar 

  36. Farh MH et al (2018) Maximum power extraction from a partially shaded PV system using an interleaved boost converter. Energies 11(10):2543

    Google Scholar 

  37. Agamy MS et al (2012) A high efficiency DC-DC converter topology suitable for distributed large commercial and utility scale PV systems. In: 2012 15th International power electronics and motion control conference (EPE/PEMC). IEEE

    Google Scholar 

  38. Kouro S et al (2009) Control of a cascaded H-bridge multilevel converter for grid connection of photovoltaic systems. In: 2009 35th annual conference of IEEE industrial electronics. IEEE

    Google Scholar 

  39. Agarwal N, Agarwal A (2014) Mismatch losses in solar photovoltaic array and reduction techniques. MIT Int J Electric Instrum Eng 4(1):16–19

    Google Scholar 

  40. Eltamaly, AM, Farh. MH (2019) Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Solar Energy 177:306–316

    Google Scholar 

  41. Bhatnagar P, Nema RK (2013) Maximum power point tracking control techniques: State-of-the-art in photovoltaic applications. Renew Sustain Energy Rev 23:224–241

    Google Scholar 

  42. Scarpa VV, Buso S, Spiazzi G (2008) Low-complexity MPPT technique exploiting the PV module MPP locus characterization. IEEE Trans Indus Electron 56(5):1531–1538

    Google Scholar 

  43. Ma J et al Dem: direct estimation method for photovoltaic maximum power point tracking. Proc Comput Sci 17:537–544

    Google Scholar 

  44. Mroczka J, Ostrowski M (2014) A hybrid maximum power point search method using temperature measurements in partial shading conditions. Metrol Measur Syst 733–740

    Google Scholar 

  45. Esram T, Chapman PL (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Conver 22(2):439–449

    Article  Google Scholar 

  46. Malathy S, Ramaprabha R (2013) Maximum power point tracking based on look up table approach. Adv Mater Res 768. Trans Tech Publications Ltd

    Google Scholar 

  47. Liu F et al (2008) Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter. In: 2008 3rd IEEE conference on industrial electronics and applications. IEEE

    Google Scholar 

  48. Hua C-C, Fang Y-H, Chen W-T (2016) Hybrid maximum power point tracking method with variable step size for photovoltaic systems. IET Renew Power Gener 10(2):127–132

    Article  Google Scholar 

  49. Strache S et al (2012) Maximum power point tracker for small number of solar cells connected in series. In: IECON 2012-38th annual conference on ieee industrial electronics society. IEEE

    Google Scholar 

  50. Eltamaly AM, El-Tamaly HH, Enjeti P (2002) An improved maximum power point tracker for photovoltaic energy systems. In: The 2nd Minia international conference for advanced trends in engineering

    Google Scholar 

  51. Saidi K, Maamoun M, Bounekhla MH (2019) A new high performance variable step size perturb-and-observe MPPT algorithm for photovoltaic system. Int J Power Electron Drive Syst 10(3):1662

    Google Scholar 

  52. Shobana G, Sornadeepika P, Ramaprabha R (2013) Global maximum power point tracking of photovoltaic array under partial shaded conditions. Int J Eng Res 2(3):220–224

    Google Scholar 

  53. Liu Y-H, Chen J-H, Huang J-W (2014) Global maximum power point tracking algorithm for PV systems operating under partially shaded conditions using the segmentation search method. Solar Energy 103:350–363

    Article  Google Scholar 

  54. Ghassami AA, Sadeghzadeh SM, Soleimani A (2013) A high performance maximum power point tracker for PV systems. Int J Electric Power & Energy Systems 53:237–243

    Google Scholar 

  55. Tey KS, Mekhilef S (2014) Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans Indus Electron 61(10):5384–5392

    Google Scholar 

  56. Jain S, Agarwal V (2004) A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems. IEEE Power Electron Lett 2(1):16–19

    Article  Google Scholar 

  57. De Brito MAG et al. (2011) Comparative analysis of MPPT techniques for PV applications. In: 2011 International conference on clean electrical power (ICCEP). IEEE

    Google Scholar 

  58. Li X et al. (2016) Photovoltaic modified β-parameter-based mppt method with fast tracking. J Power Electron 16(1):9–17

    Google Scholar 

  59. Midya P et al. (1996) Dynamic maximum power point tracker for photovoltaic applications. In: PESC Record. 27th annual IEEE power electronics specialists conference, vol 2. IEEE

    Google Scholar 

  60. Kitano T, Matsui M, Xu DH (2001) Power sensor-less MPPT control scheme utilizing power balance at DC link-system design to ensure stability and response. In: IECON’01. 27th annual conference of the IEEE industrial electronics society (Cat. No. 37243), vol 2. IEEE

    Google Scholar 

  61. Arias J et al (2004) A modular PV regulator based on microcontroller with maximum power point tracking. In: 2004 39th IAS annual meeting conference record of the 2004 IEEE industry applications conference, vol 2. IEEE

    Google Scholar 

  62. Shmilovitz D (2005) On the control of photovoltaic maximum power point tracker via output parameters. IEE Proc Electric Power Appl 152(2):239–248

    Article  Google Scholar 

  63. Li H et al (2017) Three-point bidirectional perturbation MPPT method in PV system. In: IECON 2017, 43rd annual conference of the IEEE industrial electronics society. IEEE.

    Google Scholar 

  64. Wang P et al (2010) A novel approach of maximizing energy harvesting in photovoltaic systems based on bisection search theorem. In: 2010 Twenty-fifth annual IEEE applied power electronics conference and exposition (APEC). IEEE.

    Google Scholar 

  65. Zhang M, Wu J, Zhao H (2004) The application of slide technology in PV maximum power point tracking system. In: Fifth world congress on intelligent control and automation (IEEE Cat. No. 04EX788),vol 6. IEEE

    Google Scholar 

  66. Li D et al (2009) Transient maximum power point tracking for single-stage grid-tied inverter. In: 2009 IEEE energy conversion congress and exposition. IEEE.

    Google Scholar 

  67. Bodur M, Ermis M (1994) Maximum power point tracking for low power photovoltaic solar panels. In: Proceedings of MELECON’94. Mediterranean electrotechnical conference. IEEE

    Google Scholar 

  68. Eltamaly, AM (2010) Modeling of fuzzy logic controller for photovoltaic maximum power point tracker. In: Solar Future 2010 conference, Istanbul, Turkey

    Google Scholar 

  69. Eltamaly AM, Alolah AI, Abdulghany MY (2010) Digital implementation of general purpose fuzzy logic controller for photovoltaic maximum power point tracker. In: SPEEDAM 2010. IEEE

    Google Scholar 

  70. Eltamaly AM., Alolah AI, Badr BM (2010) Fuzzy controller for three phases induction motor drives. In: 2010 International conference on autonomous and intelligent systems, AIS 2010. IEEE

    Google Scholar 

  71. Farh HM, Eltamaly AM (2013) Fuzzy logic control of wind energy conversion system. J Renew Sustain Energy 5(2):023125

    Article  Google Scholar 

  72. Eltamaly AM (2013) Design and implementation of wind energy system in Saudi Arabia. Renew Energy 60:42–52

    Google Scholar 

  73. Eltamaly AM, Farh HM (2013) Maximum power extraction from wind energy system based on fuzzy logic control. Electric Power Syst Res 97:144–150

    Article  Google Scholar 

  74. Altas IH, Sharaf AM (2008) A novel maximum power fuzzy logic controller for photovoltaic solar energy systems. Renew Energy 33(3):388–399

    Article  Google Scholar 

  75. Punitha K, Devaraj D, Sakthivel S (2013) Artificial neural network based modified incremental conductance algorithm for maximum power point tracking in photovoltaic system under partial shading conditions. Energy 62:330–340

    Article  Google Scholar 

  76. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4. IEEE

    Google Scholar 

  77. Eltamaly AM et al (2020) Photovoltaic maximum power point tracking under dynamic partial shading changes by novel adaptive particle swarm optimization strategy. Trans Inst Measur Control 42(1):104–115

    Google Scholar 

  78. Eltamaly AM, Farh HMH, Al Saud MS (2019) Impact of PSO reinitialization on the accuracy of dynamic global maximum power detection of variant partially shaded PV systems. Sustainability 11(7):2091

    Google Scholar 

  79. Eltamaly AM, Farh HM, Abokhalil AG (2020) A novel PSO strategy for improving dynamic change partial shading photovoltaic maximum power point tracker. Energy Sourc Part A Recovery, Utilization Environ Effects 1–15

    Google Scholar 

  80. Eltamaly AM, Al-Saud MS, Abo-Khalil AG (2020) Performance improvement of PV systems’ maximum power point tracker based on a scanning PSO particle strategy. Sustainability 12(3):1185

    Google Scholar 

  81. Eltamaly AM et al (2020) Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading. Renew Sustain Energy Rev 124:109719

    Google Scholar 

  82. Farh HMH et al (2020) A novel crow search algorithm auto-drive PSO for optimal allocation and sizing of renewable distributed generation. IEEE Access 8:27807–27820

    Google Scholar 

  83. Mohamed MA, Eltamaly AM, Alolah AI (2016) PSO-based smart grid application for sizing and optimization of hybrid renewable energy systems. PloS One 11(8):e0159702

    Article  Google Scholar 

  84. Khaled U, Eltamaly AM, Beroual A (2017) Optimal power flow using particle swarm optimization of renewable hybrid distributed generation. Energies 10(7):1013

    Article  Google Scholar 

  85. Mohamed MA, Eltamaly AM, Alolah AI (2017) Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems. Renew Sustain Energy Rev 77:515–524

    Article  Google Scholar 

  86. Mohamed MA, Eltamaly AM (2018) A novel smart grid application for optimal sizing of hybrid renewable energy systems. In: Modeling and simulation of smart grid integrated with hybrid renewable energy systems. Springer, Cham, pp 39–51

    Google Scholar 

  87. Mohamed MA, Eltamaly AM (2018) A PSO-based smart grid application for optimum sizing of hybrid renewable energy systems. In: Modeling and simulation of smart grid integrated with hybrid renewable energy systems. Springer, Cham, pp 53–60

    Google Scholar 

  88. Mohamed MA, Eltamaly AM (2018) Modeling and simulation of smart grid integrated with hybrid renewable energy systems. Springer, New York

    Google Scholar 

  89. Mohamed MA, Eltamaly AM (2018) Modeling of hybrid renewable energy system. In: Modeling and simulation of smart grid integrated with hybrid renewable energy systems. Springer, Cham, pp 11–21

    Google Scholar 

  90. Eltamaly AM, Mohamed MA (2018) Optimal sizing and designing of hybrid renewable energy systems in smart grid applications. Adv Renew Energies Power Technol 231–313. Elsevier

    Google Scholar 

  91. Eltamaly AM, Al-Saud MS (2018) Nested multi-objective PSO for optimal allocation and sizing of renewable energy distributed generation. J Renew Sustain Energy 10(3):035302

    Google Scholar 

  92. Eltamaly AM, Sayed Y, Elghaffar AN (2017) Power flow control for distribution generator in Egypt using facts devices. Acta Tech Corviniensis-Bull Eng 10(2)

    Google Scholar 

  93. Eltamaly AM, Mohamed MA (2016) A novel software for design and optimization of hybrid power systems. J Braz Soc Mech Sci Eng 38(4):1299–1315

    Article  Google Scholar 

  94. Eltamaly AM, Al-Saud MS, Abokhalil AG (2020) A novel bat algorithm strategy for maximum power point tracker of photovoltaic energy systems under dynamic partial shading. IEEE Access 8:10048–10060

    Google Scholar 

  95. Liu Y-H et al (2012) A particle swarm optimization-based maximum power point tracking algorithm for PV systems operating under partially shaded conditions. IEEE Trans Energy Convers 27(4):1027–1035

    Google Scholar 

  96. Ji B et al (2020) PV MPPT control under partial shading conditions with a particle replacement gaussian particle swarm optimization method. IEEJ J Indus Appl 9(4):418–427

    Google Scholar 

  97. Farh HMH et al (2019) Dynamic global power extraction from partially shaded photovoltaic using deep recurrent neural network and improved PSO techniques. Int Trans Electric Energy Syst 29(9):e12061.

    Google Scholar 

  98. Chowdhury SR, Saha H (2010) Maximum power point tracking of partially shaded solar photovoltaic arrays. Solar Energy Mater Solar Cells 94(9):1441–1447

    Google Scholar 

  99. Khare A, Rangnekar S (2013) A review of particle swarm optimization and its applications in solar photovoltaic system. Appl Soft Comput 13(5):2997–3006

    Article  Google Scholar 

  100. Ishaque K, Salam Z (2012) A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading condition. IEEE Trans Indus Electron 60(8):3195–3206

    Google Scholar 

  101. Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative strategies for optimization (NICSO 2010). Springer, Berlin, Heidelberg, pp 65–74

    Google Scholar 

  102. Oshaba AS, Ali ES, Abd Elazim SM (2015) MPPT control design of PV system supplied SRM using BAT search algorithm. Sustain Energy Grids Netw 2:51–60

    Google Scholar 

  103. Karagoz M, Demirel H (2017) A novel MPPT method for PV arrays based on modified bat algorithm with partial shading capability

    Google Scholar 

  104. Kaced K et al (2017) Bat algorithm based maximum power point tracking for photovoltaic system under partial shading conditions. Solar Energy 158:490–503

    Google Scholar 

  105. Oshaba AS, Ali ES, Abd Elazim SM (2017) PI controller design for MPPT of photovoltaic system supplying SRM via BAT search algorithm. Neural Comput Appl 28(4):651–667

    Google Scholar 

  106. Seyedmahmoudian M et al (2018) Maximum power point tracking for photovoltaic systems under partial shading conditions using bat algorithm. Sustainability 10(5):1347

    Google Scholar 

  107. Tey KS, Mekhilef S, Seyedmahmoudian M (2018) Implementation of BAT algorithm as maximum power point tracking technique for photovoltaic system under partial shading conditions. In: 2018 IEEE energy conversion congress and exposition (ECCE). IEEE

    Google Scholar 

  108. Eltamaly AM, Al-Saud MS, Abokhalil AG (2020) A novel scanning bat algorithm strategy for maximum power point tracker of partially shaded photovoltaic energy systems. Ain Shams Eng J

    Google Scholar 

  109. da Rocha MV, Sampaio LP, da Silva SA (2020) Comparative analysis of MPPT algorithms based on Bat algorithm for PV systems under partial shading condition. Sustain Energy Technol Assess 40:100761

    Google Scholar 

  110. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009 World congress on nature & biologically inspired computing, 2009 NaBIC. IEEE

    Google Scholar 

  111. Ahmed J, Salam Z (2014) A maximum power point tracking (MPPT) for PV system using Cuckoo Search with partial shading capability. Appl Energy 119:118–130

    Article  Google Scholar 

  112. Ahmed J, Salam Z (2013) A soft computing MPPT for PV system based on Cuckoo Search algorithm. In: 4th International conference on power engineering, energy and electrical drives. IEEE

    Google Scholar 

  113. Anand R, Swaroop D, Kumar B (2020) Global maximum power point tracking for PV array under partial shading using Cuckoo search. In: 2020 IEEE 9th power India international conference (PIICON). IEEE

    Google Scholar 

  114. Ibrahim A, Obukhov S, Aboelsaud R (2019) Determination of global maximum power point tracking of PV under partial shading using cuckoo search algorithm. Appl Solar Energy 55(6):367–375

    Article  Google Scholar 

  115. Ferdiansyah I et al (2019) Implementation of maximum power point tracking on solar panels using cuckoo search algorithm method. In: 2019 2nd International conference on applied information technology and innovation (ICAITI). IEEE

    Google Scholar 

  116. El Baset AA et al (2019) A comparative study between perturb and observe and Cuckoo search algorithm for maximum power point tracking. In: 2019 21st International middle east power systems conference (MEPCON). IEEE

    Google Scholar 

  117. Abo-Elyousr FK, Abdelshafy AM, Abdelaziz AY (2020) MPPT-based particle swarm and cuckoo search algorithms for PV systems. In: Modern maximum power point tracking techniques for photovoltaic energy systems. Springer, Cham, pp 379–400

    Google Scholar 

  118. Mohamed MA et al (2019) A novel framework-based cuckoo search algorithm for sizing and optimization of grid-independent hybrid renewable energy systems. Int J Green Energy 16(1):86–100

    Google Scholar 

  119. Atia DM (2020) Global maximum power point tracking-based computational intelligence techniques. In: Modern maximum power point tracking techniques for photovoltaic energy systems. Springer, Cham, pp 131–163

    Google Scholar 

  120. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Google Scholar 

  121. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department, vol 200

    Google Scholar 

  122. Motahhir S, Chouder A, El Hammoumi A, Benyoucef AS, El Ghzizal A, Kichou S, Kara K, Sanjeevikumar P, Silvestre S Optimal energy harvesting from a multistrings PV generator based on artificial bee colony algorithm. IEEE Syst J

    Google Scholar 

  123. Sundareswaran K et al (2014) Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony. IEEE Trans Sustain Energy 6(1):198–209

    Google Scholar 

  124. Soufyane Benyoucef A et al (2015) Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions. Appl Soft Comput 32:38–48

    Google Scholar 

  125. Chu S-C, Tsai PW, Pan JS (2006) Cat swarm optimization. In: Pacific Rim international conference on artificial intelligence. Springer, Berlin, Heidelberg

    Google Scholar 

  126. Guo L et al (2018) A modified cat swarm optimization based maximum power point tracking method for photovoltaic system under partially shaded condition. Energy 144:501–514

    Google Scholar 

  127. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Google Scholar 

  128. Jiang LL, Maskell DL, Patra JC (2013) A novel ant colony optimization-based maximum power point tracking for photovoltaic systems under partially shaded conditions. Energy Build 58:227–236

    Google Scholar 

  129. Titri S et al (2017) A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions. Appl Soft Comput 58:465–479

    Google Scholar 

  130. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, Berlin, Heidelberg

    Google Scholar 

  131. Sundareswaran K, Peddapati S, Palani S (2014) MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies. IEEE Trans Energy Conv 29(2):463–472

    Article  Google Scholar 

  132. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  133. Premkumar M, Sowmya R (2019) An effective maximum power point tracker for partially shaded solar photovoltaic systems. Energy Rep 5:1445–1462

    Article  Google Scholar 

  134. Kumar CH, Srinivasa Rao R (2016) A novel global MPP tracking of photovoltaic system based on whale optimization algorithm. Int J Renew Energy Dev 5(3)

    Google Scholar 

  135. Diab AA (2020) MPPT of PV system under partial shading conditions based on hybrid whale optimization-simulated annealing algorithm (WOSA). In: Modern maximum power point tracking techniques for photovoltaic energy systems. Springer, Cham, pp 355–378

    Google Scholar 

  136. Eesa AS, Brifcani AM, Orman Z (2014) A new tool for global optimization problems-cuttlefish algorithm. Int J Math Comput Natural Phys Eng 8(9):1208–1211

    Google Scholar 

  137. Sameh MA et al (2019) Enhancing the performance of photovoltaic systems under partial shading conditions using cuttlefish algorithm. In: 2019 8th International conference on renewable energy research and applications (ICRERA). IEEE.

    Google Scholar 

  138. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  139. Mansoor M et al (2020) Novel Grass Hopper optimization based MPPT of PV systems for complex partial shading conditions. Solar Energy 198:499–518

    Google Scholar 

  140. Meng Z, Pan J-S (2016) Monkey king evolution: a new memetic evolutionary algorithm and its application in vehicle fuel consumption optimization. Knowledge-Based Syst 97:144–157

    Article  MathSciNet  Google Scholar 

  141. Kumar N et al (2017) Maximum power peak detection of partially shaded PV panel by using intelligent monkey king evolution algorithm. IEEE Trans Indus Appl 53(6):5734–5743

    Google Scholar 

  142. Vahid, MZ et al (2020) Optimal, reliable and economic designing of renewable energy photovoltaic/wind system considering different storage technology using intelligent improved salp swarm optimisation algorithm, commercial application for Iran country. Int J Sustain Energy 39(5):465–485

    Google Scholar 

  143. Mirza AF et al (2020) A salp-swarm optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions. Energy Conv Manag 209:112625.

    Google Scholar 

  144. Premkumar M et al (2019) Analysis and simulation of bio-inspired intelligent salp swarm MPPT method for the PV systems under partial shaded conditions. Int J Comput Digital Syst 8(5):490–496

    Google Scholar 

  145. Shi J-Y et al (2019) Moth-flame optimization-based maximum power point tracking for photovoltaic systems under partial shading conditions. J Power Electron 19(5):1248–1258

    Google Scholar 

  146. Ponce-Cruz P et al (2020) A practical approach to metaheuristics using LabVIEW and MATLAB®. CRC Press

    Google Scholar 

  147. Mendez E et al (2018) Electric machines control optimization by a novel geo-inspired earthquake metaheuristic algorithm. In: 2018 Nanotechnology for instrumentation and measurement (NANOfIM). IEEE

    Google Scholar 

  148. Mendez E et al (2020) Improved MPPT algorithm for photovoltaic systems based on the earthquake optimization algorithm. Energies 13(12):3047.

    Google Scholar 

  149. Pincus M (1970) Letter to the editor—a Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Oper Res 18(6):1225–1228

    Article  MathSciNet  MATH  Google Scholar 

  150. Kumar N et al (2017) Single sensor based MPPT for partially shaded solar photovoltaic by using human psychology optimisation algorithm. IET Gener Trans Distrib 11(10):2562–2574

    Google Scholar 

  151. Elbehairy NM et al (2019) Maximum power point tracking for a stand alone PV system under shading conditions using flower pollination algorithm. In: 2019 21st International middle east power systems conference (MEPCON). IEEE

    Google Scholar 

  152. Ram JP, Rajasekar N (2017) A new global maximum power point tracking technique for solar photovoltaic (PV) system under partial shading conditions (PSC). Energy 118:512–525

    Google Scholar 

  153. Chao K-H, Meng-Cheng W (2016) Global maximum power point tracking (MPPT) of a photovoltaic module array constructed through improved teaching-learning-based optimization. Energies 9(12):986

    Article  Google Scholar 

  154. Nagadurga T, Narasimham PVRL, Vakula VS (2020) Global maximum power point tracking of solar PV strings using the teaching learning based optimisation technique. Int J Ambient Energy 1–12

    Google Scholar 

  155. Mahmoud A et al (2019) Photovoltaic array reconfiguration to reduce partial shading losses using water cycle algorithm. In: 2019 IEEE electrical power and energy conference (EPEC). IEEE.

    Google Scholar 

  156. Tajuddin MFN et al (2013) Evolutionary based maximum power point tracking technique using differential evolution algorithm. Energy Build 67:245–252

    Google Scholar 

  157. Ahmed J, Salam Z (2015) A critical evaluation on maximum power point tracking methods for partial shading in PV systems. Renew Sustain Energy Rev 47:933–953

    Article  Google Scholar 

  158. Taheri H, Salam Z, Ishaque K (2010) A novel maximum power point tracking control of photovoltaic system under partial and rapidly fluctuating shadow conditions using differential evolution. In: 2010 IEEE Symposium on industrial electronics and applications (ISIEA). IEEE

    Google Scholar 

  159. Wei WANG, Ning LI, Shaoyuan LI (2012) A real-time modeling of photovoltaic array. Chin J Chem Eng 20(6):1154–1160

    Article  Google Scholar 

  160. Ramli MAM et al (2015) A modified differential evolution based maximum power point tracker for photovoltaic system under partial shading condition. Energy Build 103:175–184

    Google Scholar 

  161. Ramaprabha R, Mathur BL (2011) Soft computing optimization techniques for solar photovoltaic arrays. ARPN J Eng Appl Sci 6(10):120–129

    Google Scholar 

  162. Shaiek Y et al (2013) Comparison between conventional methods and GA approach for maximum power point tracking of shaded solar PV generators. Solar Energy 90:107–122

    Google Scholar 

  163. Eltamaly AM, Al-Shamma’a AA (2016) Optimal configuration for isolated hybrid renewable energy systems. J Renew Sustain Energy 8(4):045502

    Article  Google Scholar 

  164. Ramaprabha R et al (2010) Modified Fibonacci search based MPPT scheme for SPVA under partial shaded conditions. In: 2010 3rd International conference on emerging trends in engineering and technology. IEEE

    Google Scholar 

  165. Miyatake M et al (2004) Control characteristics of a fibonacci-search-based maximum power point tracker when a photovoltaic array is partially shaded. In: The 4th international power electronics and motion control conference, IPEMC 2004, vol. 2. IEEE

    Google Scholar 

  166. Ahmed NA, Miyatake M (2008) A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electric Power Syst Res 78(5):777–784

    Article  Google Scholar 

  167. Ramaprabha R, Balaji M, Mathur BL (2012) Maximum power point tracking of partially shaded solar PV system using modified Fibonacci search method with fuzzy controller. Int J Electric Power Energy Syst 43(1):754–765

    Article  Google Scholar 

  168. Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Indus Eng Comput 7(1):19–34

    Google Scholar 

  169. Huang C et al (2017) A novel global maximum power point tracking method for PV system using Jaya algorithm. In: 2017 IEEE conference on energy internet and energy system integration (EI2). IEEE.

    Google Scholar 

  170. Huang C et al (2017) A prediction model-guided Jaya algorithm for the PV system maximum power point tracking. IEEE Trans Sustain Energy 9(1):45–55

    Google Scholar 

  171. Glover F (1986) Future paths for integer programming and links to ar tifi cial intelli g en ce. Comput Oper Res 13(5):533–549

    Article  MathSciNet  Google Scholar 

  172. Zheng Y, Wei C, Lin S (2011) A maximum power point tracking method based on tabu search for PV systems under partially shaded conditions. 52–52

    Google Scholar 

  173. Lei P et al (2010) Extremum seeking control based integration of MPPT and degradation detection for photovoltaic arrays. In: Proceedings of the 2010 American control conference. IEEE

    Google Scholar 

  174. Wang L et al (2015) MPPT of PV array using stepped-up chaos optimization algorithm. Turk J Electric Eng Comput Sci 23(6):1748–1760

    Google Scholar 

  175. Zhou L et al (2012) Maximum power point tracking (MPPT) control of a photovoltaic system based on dual carrier chaotic search. J Control Theor Appl 10(2):244–250

    Google Scholar 

  176. Xu S et al (2020) A global maximum power point tracking algorithm for photovoltaic systems under partially shaded conditions using modified maximum power trapezium method. IEEE Trans Indus Electron

    Google Scholar 

  177. Kermadi M et al (2020) A high-performance global maximum power point tracker of PV system for rapidly changing partial shading condition. IEEE Trans Indus Electron.

    Google Scholar 

  178. Masood B et al (2014) Maximum power point tracking using hybrid perturb & observe and incremental conductance techniques. In: 2014 4th International conference on engineering technology and technopreneuship (ICE2T). IEEE.

    Google Scholar 

  179. Sher HA et al (2015) A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Trans Sustain Energy 6(4):1426–1434

    Google Scholar 

  180. Sundareswaran K et al (2015) Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system. IEEE Trans Indus Inform 12(1):187–200

    Google Scholar 

  181. Jiang LL et al (2015) A hybrid maximum power point tracking for partially shaded photovoltaic systems in the tropics. Renew Energy 76:53–65

    Google Scholar 

  182. Mitsuya MT, de Moura Meneses AA (2019) Efficiency of hybrid MPPT techniques based on ANN and PSO for photovoltaic systems under partially shading conditions.

    Google Scholar 

  183. Çelik Ö, Teke A (2017) A Hybrid MPPT method for grid connected photovoltaic systems under rapidly changing atmospheric conditions. Electric Power Syst Res 152:194–210

    Article  Google Scholar 

  184. Jiang LL et al (2013) A simple and efficient hybrid maximum power point tracking method for PV systems under partially shaded condition. In: IECON 2013-39th annual conference of the IEEE industrial electronics society. IEEE.

    Google Scholar 

  185. Mohanty S, Subudhi B, Ray PK (2016) A grey wolf-assisted perturb & observe MPPT algorithm for a PV system. IEEE Trans Energy Convers 32(1):340–347.

    Google Scholar 

  186. Ahmed CC, Cherkaoui M, Mokhlis M (2020) PSO-SMC controller based GMPPT technique for photovoltaic panel under partial shading effect. Int J Intell Eng Syst 13(2):307–316

    Google Scholar 

  187. Sundareswaran K, Palani S (2015) Application of a combined particle swarm optimization and perturb and observe method for MPPT in PV systems under partial shading conditions. Renew Energy 75:308–317

    Article  Google Scholar 

  188. Kamal NA et al (2019) PSO-based adaptive perturb and observe MPPT technique for photovoltaic systems. In: International conference on advanced intelligent systems and informatics. Springer, Cham

    Google Scholar 

  189. Liu J et al (2017) Global MPPT algorithm with coordinated control of PSO and INC for rooftop PV array. J Eng 13:778–782

    Google Scholar 

  190. Balaji V, Peer Fathima A (2020) Enhancing the maximum power extraction in partially shaded PV arrays using hybrid salp swarm perturb and observe algorithm. Int J Renew Energy Res (IJRER) 10(2):898–911

    Google Scholar 

  191. Adly M, Besheer AH (2013) A meta-heuristics search algorithm as a solution for energy transfer maximization in stand-alone photovoltaic systems. Int J Electric Power Energy Syst 51:243–254

    Article  Google Scholar 

  192. Ling C, Honghua W, Wei H (2015) Simulation study of photovoltaic power generation in maximum power point tracking based on CSA-FPI algorithm. Electric Measur Instrum 8:39–44

    Google Scholar 

  193. Sheraz, Muhammad, and Mohammed A. Abido. “An efficient MPPT controller using differential evolution and neural network.” 2012 IEEE International Conference on Power and Energy (PECon). IEEE, 2012.

    Google Scholar 

  194. Davoodkhani F et al (2020) A new hybrid method based on gray wolf optimizer-crow search algorithm for maximum power point tracking of photovoltaic energy system. In: Modern maximum power point tracking techniques for photovoltaic energy systems. Springer, Cham, pp. 421–438.

    Google Scholar 

  195. Ngan MS, Tan CW (2011) Multiple peaks tracking algorithm using particle swarm optimization incorporated with artificial neural network. Int J Electron Commun Eng 5(10):1325–1331

    Google Scholar 

  196. Farh HM, Eltamaly AM, Othman MF (2018) Hybrid PSO-FLC for dynamic global peak extraction of the partially shaded photovoltaic system. PloS One 13(110):e0206171.

    Google Scholar 

  197. Verma P, Garg R, Mahajan P (2020) Asymmetrical interval type-2 fuzzy logic control based MPPT tuning for PV system under partial shading condition. ISA Trans

    Google Scholar 

  198. Satheesh Kumar S, Immanuel Selvakumar, A (2020) Maximum power point tracking and power flow management of hybrid renewable energy system with partial shading capability: a hybrid technique. Trans Inst Measur Control 0142331220909671.

    Google Scholar 

  199. Karatepe E, Hiyama T (2009) Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system. Renew Energy 34(12):2597–2606

    Article  Google Scholar 

  200. Amara K et al (2018) Improved performance of a PV solar panel with adaptive neuro fuzzy inference system ANFIS based MPPT. In: 2018 7th International conference on renewable energy research and applications (ICRERA). IEEE.

    Google Scholar 

  201. Seyedmahmoudian M et al (2015) Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method. IEEE Trans Sustain Energy 6(3):850–862.

    Google Scholar 

  202. Koad RB, Zobaa AF, El-Shahat A (2016) A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems. IEEE Trans Sustain Energy 8(2):468–476

    Google Scholar 

  203. Chaieb H, Sakly A (2018) A novel MPPT method for photovoltaic application under partial shaded conditions. Solar Energy 159:291–299

    Article  Google Scholar 

  204. Kumar N et al (2017) MPPT in dynamic condition of partially shaded PV system by using WODE technique. IEEE Trans Sustain Energy 8(3):1204–1214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Eltamaly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eltamaly, A.M. (2021). Photovoltaic Maximum Power Point Trackers: An Overview. In: Motahhir, S., Eltamaly, A.M. (eds) Advanced Technologies for Solar Photovoltaics Energy Systems. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-64565-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64565-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64564-9

  • Online ISBN: 978-3-030-64565-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics