Skip to main content

Embryonic Development of the Kissing Bug Rhodnius prolixus

  • Chapter
  • First Online:
Triatominae - The Biology of Chagas Disease Vectors

Part of the book series: Entomology in Focus ((ENFO,volume 5))

Abstract

The dissemination of neglected tropical diseases that is performed by insect vectors is highly dependent on processes that take place during embryogenesis, herein defined as the process from egg deposition until hatching. To efficiently maintain the next generation of infective animals, eggs that are laid by the Chagas disease vector Rhodnius prolixus contain all of the molecular information that is required for embryonic development. Several morphogenetic processes take place during this time, after which a miniature of the adult emerges from the egg. Here, we present the current knowledge on the embryonic development of R. prolixus. Firstly, we present a historical overview of R. prolixus embryology from the earliest studies in the first half of the twentieth century to present. Then, we discuss how recent advances in functional genomics might foster new discoveries related to the molecular control of R. prolixus embryology and its interface with vector population control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akam M (1995) Hox genes and the evolution of diverse body plans. Philos Trans R Soc Lond B Biol Sci 349(1329):313–319

    Article  CAS  PubMed  Google Scholar 

  • Alves-Bezerra M et al (2016) Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus. Biochim Biophys Acta 1861(7):650–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods

    Google Scholar 

  • Angelini DR et al (2005) Hox gene function and interaction in the milkweed bug Oncopeltus fasciatus (Hemiptera). Dev Biol 287(2):440–455

    Article  CAS  PubMed  Google Scholar 

  • Ansari S et al (2018) Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle Tribolium castaneum. Proc Natl Acad Sci U S A 115(8):1819–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atella GC et al (2005) Oogenesis and egg development in triatomines: a biochemical approach. An Acad Bras Cienc 77(3):405–430

    Article  CAS  PubMed  Google Scholar 

  • Auman T, Chipman AD (2018) Growth zone segmentation in the milkweed bug Oncopeltus fasciatus sheds light on the evolution of insect segmentation. BMC Evol Biol 18(1):178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bassett AR et al (2014) Understanding functional miRNA-target interactions in vivo by site-specific genome engineering. Nat Commun 5:4640

    Article  CAS  PubMed  Google Scholar 

  • Bastock R, St Johnston D (2008) Drosophila oogenesis. Curr Biol 18(23):R1082–R1087

    Article  CAS  PubMed  Google Scholar 

  • Beament JW (1946a) The formation and structure of the chorion of the egg in an hemipteran, Rhodnius prolixus. Q J Microsc Sci 87(4):393–439

    CAS  PubMed  Google Scholar 

  • Beament JW (1946b) Waterproofing mechanism of an insect egg. Nature 157:370

    Article  CAS  PubMed  Google Scholar 

  • Berni M et al (2014) Toll signals regulate dorsal–ventral patterning and anterior–posterior placement of the embryo in the hemipteran Rhodnius prolixus. EvoDevo J 5:38

    Article  Google Scholar 

  • Birkan M et al (2011) Early patterning and blastodermal fate map of the head in the milkweed bug Oncopeltus fasciatus. Evol Dev 13(5):436–447

    Article  PubMed  Google Scholar 

  • Bomfim L et al (2017) Eggshell ultrastructure and delivery of pharmacological inhibitors to the early embryo of R. prolixus by ethanol permeabilization of the extraembryonic layers. PLoS One 12(9):e0185770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brito T et al (2018) Transcriptomic and functional analyses of the piRNA pathway in the Chagas disease vector Rhodnius prolixus. PLoS Negl Trop Dis 12(10):e0006760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher G et al (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12(3):R85–R86

    Article  CAS  PubMed  Google Scholar 

  • Büning J (1994) The insect ovary. Springer, Dordrecht

    Book  Google Scholar 

  • Butt FH (1949) Embryology of the milkweed bugOncopeltus fasciatus, Cornell Univ Agr Exp Sta, Mem

    Google Scholar 

  • Buxton PA (1930) The biology of a blood-sucking bug, Rhodnius prolixus. Trans Ent Soc Lond 78:227–236

    Article  Google Scholar 

  • Cardoso MA et al (2017) A novel function for the IkappaB inhibitor Cactus in promoting Dorsal nuclear localization and activity in the Drosophila embryo. Development 144(16):2907–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaverra-Rodriguez D et al (2018) Targeted delivery of CRISPR-Cas9 ribonucleoprotein into arthropod ovaries for heritable germline gene editing. Nat Commun 9(1):3008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Church SH et al (2019) Insect egg size and shape evolve with ecology but not developmental rate. Nature 571(7763):58–62

    Article  CAS  PubMed  Google Scholar 

  • Counce SJ, Waddington CH (1972) Developmental systems: insects. Academic Press, London

    Google Scholar 

  • Coura JR, Dias JC (2009) Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz 104(Suppl 1):31–40

    Article  PubMed  Google Scholar 

  • Davis GK, Patel NH (2002) Short, long, and beyond: molecular and embryological approaches to insect segmentation. Annu Rev Entomol 47:669–699

    Article  CAS  PubMed  Google Scholar 

  • de Fuentes-Vicente JA et al (2018) What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 183:23–31

    Article  PubMed  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988) A gradient of bicoid protein in Drosophila embryos. Cell 54(1):83–93

    Article  CAS  PubMed  Google Scholar 

  • Ephrussi A et al (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66(1):37–50

    Article  CAS  PubMed  Google Scholar 

  • Erezyilmaz DF et al (2009a) The nuclear receptor E75A has a novel pair-rule-like function in patterning the milkweed bug, Oncopeltus fasciatus. Dev Biol 334(1):300–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erezyilmaz DF et al (2009b) The role of the pupal determinant broad during embryonic development of a direct-developing insect. Dev Genes Evol 219(11-12):535–544

    Article  PubMed  Google Scholar 

  • Ewen-Campen B et al (2011) The maternal and early embryonic transcriptome of the milkweed bug Oncopeltus fasciatus. BMC Genomics 12:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ewen-Campen B et al (2013) Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect. Curr Biol 23(10):835–842

    Article  CAS  PubMed  Google Scholar 

  • Feitosa NM et al (2017) Molecular control of gut formation in the spider Parasteatoda tepidariorum. Genesis 55(5)

    Google Scholar 

  • Gantz VM, Bier E (2015) Genome editing. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348(6233):442–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilles AF et al (2015) Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 142(16):2832–2839

    CAS  PubMed  Google Scholar 

  • Ginzburg N et al (2017) Factors involved in early polarization of the anterior-posterior axis in the milkweed bug Oncopeltus fasciatus. Genesis 55(5)

    Google Scholar 

  • Gonzalez-Reyes A et al (1995) Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 375(6533):654–658

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi D, Engel MS (2005) Evolution of insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Harrison RE, Huebner E (1997) Unipolar microtubule array is directly involved in nurse cell-oocyte transport. Cell Motil Cytoskeleton 36(4):355–362

    Article  CAS  PubMed  Google Scholar 

  • Heming BS, Huebner E (1994) Development of the germ cells and reproductive primordia in male and female embryos of Rhodnius prolixus Stål (Hemiptera: Reduviidae). Can J Zool 72:1100–1119

    Article  Google Scholar 

  • Huebner E (1981a) Nurse cell-oocyte interaction in the telotrophic ovarioles of an insect, Rhodnius prolixus. Tissue Cell 13(1):105–125

    Article  CAS  PubMed  Google Scholar 

  • Huebner E (1981b) Oocyte-follicle cell interaction during normal oogenesis and atresia in an insect. J Ultrastruct Res 74(1):95–104

    Article  CAS  PubMed  Google Scholar 

  • Huebner E (1984) The ultrastructure and development of the telotrophic ovary. In: King RC, Akai H (eds) Insect ultrastructure. Plenum Press, New York, pp 13–48

    Google Scholar 

  • Huebner E, Anderson E (1972) A cytological study of the ovary of Rhodnius prolixus. Cytoarchitecture and development of the trophic chamber. J Morphol 138(1):1–40

    Article  CAS  PubMed  Google Scholar 

  • Juan-Blasco M et al (2014) Estimating SIT-driven population reduction in the Mediterranean fruit fly, Ceratitis capitata, from sterile mating. Bull Entomol Res 104(2):233–242

    Article  CAS  PubMed  Google Scholar 

  • Kelly GM, Huebner E (1989) Embryonic Development of the Hemipteran Insect Rhodnius prolixus. J Morphol 199:175–196

    Article  PubMed  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. 227

    Google Scholar 

  • Klomp J et al (2015) Embryo development. A cysteine-clamp gene drives embryo polarity in the midge Chironomus. Science 348(6238):1040–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavore A et al (2012) The gap gene giant of Rhodnius prolixus is maternally expressed and required for proper head and abdomen formation. Dev Biol 361(1):147–155

    Article  CAS  PubMed  Google Scholar 

  • Lavore A et al (2014) The gap gene Kruppel of Rhodnius prolixus is required for segmentation and for repression of the homeotic gene sex comb-reduced. Dev Biol

    Google Scholar 

  • Lavore A et al (2015) Comparative analysis of zygotic developmental genes in Rhodnius prolixus genome shows conserved features on the tracheal developmental pathway. Insect Biochem Mol Biol 64:32–43

    Article  CAS  PubMed  Google Scholar 

  • Lawerence PA, Green SM (1975) The anatomy of a compartment border. The intersegmental boundary in Oncopeltus. J Cell Biol 65(2):373–382

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PA (1969) Cellular differentiation and pattern formation during metamorphosis of the milkweed bug Oncopeltus. Dev Biol 19(1):12–40

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PA, Hayward P (1971) The development of a simple pattern: spaced hairs in Oncopeltus fasciatus. J Cell Sci 8(2):513–524

    Article  CAS  PubMed  Google Scholar 

  • Lawrence PA et al (1972) Gradient of positional information in an insect rhodnius. J Cell Sci 11(3):815–821

    Article  CAS  PubMed  Google Scholar 

  • Lehmann R, Nusslein-Volhard C (1986) Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in Drosophila. Cell 47(1):141–152

    Article  CAS  PubMed  Google Scholar 

  • Linne V et al (2012) Single-minded and the evolution of the ventral midline in arthropods. Dev Biol 364(1):66–76

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Kaufman TC (2004a) Hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131(7):1515–1527

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Kaufman TC (2004b) Kruppel is a gap gene in the intermediate germband insect Oncopeltus fasciatus and is required for development of both blastoderm and germband-derived segments. Development 131(18):4567–4579

    Article  CAS  PubMed  Google Scholar 

  • Liu PZ, Patel NH (2010) Giant is a bona fide gap gene in the intermediate germband insect, Oncopeltus fasciatus. Development 137(5):835–844

    Article  PubMed  PubMed Central  Google Scholar 

  • Lutz DA, Huebner E (1980) Development and cellular differentiation of an insect telotrophic ovary (Rhodnius prolixus). Tissue Cell 12(4):773–794

    Article  CAS  PubMed  Google Scholar 

  • Lutz DA, Huebner E (1981) Development of nurse cell-oocyte interactions in the insect telotrophic ovary (Rhodnius prolixus). Tissue Cell 13(2):321–335

    Article  CAS  PubMed  Google Scholar 

  • Lynch JA, Roth S (2011) The evolution of dorsal-ventral patterning mechanisms in insects. Genes Dev 25(2):107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JA et al (2010) EGF signaling and the origin of axial polarity among the insects. Curr Biol 20(11):1042–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch JA et al (2012) Comparisons of the embryonic development of Drosophila, Nasonia, and Tribolium. Wiley Interdis Rev Dev Biol 1(1):16–39

    Article  CAS  Google Scholar 

  • Marcellini S et al (2017) Evolutionary Developmental Biology (Evo-Devo) research in Latin America. J Exp Zool B Mol Dev Evol 328(1-2):5–40

    Article  PubMed  Google Scholar 

  • McGregor AP et al (2008) Wnt8 is required for growth-zone establishment and development of opisthosomal segments in a spider. Curr Biol 18(20):1619–1623

    Article  CAS  PubMed  Google Scholar 

  • Medeiros MN et al (2011) Transcriptome and gene expression profile of ovarian follicle tissue of the triatomine bug Rhodnius prolixus. Insect Biochem Mol Biol 41(10):823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellanby H (1935) The early embryonic development of Rhodnius prolixus (Hemiptera, Heteroptera). Q J Micr Sci 78:71–91

    Google Scholar 

  • Mellanby H (1936) The later embryology of Rhodnius prolixus. Q J Micr Sci:1–40

    Google Scholar 

  • Melo AC et al (2000) Synthesis of vitellogenin by the follicle cells of Rhodnius prolixus. Insect Biochem Mol Biol 30(7):549–557

    Article  CAS  PubMed  Google Scholar 

  • Mesquita RD et al (2015) Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 112(48):14936–14941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo–shaping and transducing a morphogen gradient. Curr Biol 15(21):R887–R899

    Article  CAS  PubMed  Google Scholar 

  • Murakami R et al (2005) GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 47(9):581–589

    Article  CAS  PubMed  Google Scholar 

  • Mury FB et al (2016) Glycogen Synthase Kinase-3 is involved in glycogen metabolism control and embryogenesis of Rhodnius prolixus. Parasitology 143(12):1569–1579

    Article  CAS  PubMed  Google Scholar 

  • Neuman-Silberberg FS, Schupbach T (1993) The Drosophila dorsoventral patterning gene gurken produces a dorsally localized RNA and encodes a TGF alpha-like protein. Cell 75(1):165–174

    Article  CAS  PubMed  Google Scholar 

  • Nunes da Fonseca R et al (2008) Self-regulatory circuits in dorsoventral axis formation of the short-germ beetle Tribolium castaneum. Dev Cell 14(4):605–615

    Article  CAS  PubMed  Google Scholar 

  • Nunes-da-Fonseca R et al (2017) Rhodnius prolixus: From classical physiology to modern developmental biology. Genesis 55(5)

    Google Scholar 

  • Oliveira MF et al (1999) Haem detoxification by an insect. Nature 400(6744):517–518

    Article  CAS  PubMed  Google Scholar 

  • Paim RM et al (2013) Long-term effects and parental RNAi in the blood feeder Rhodnius prolixus (Hemiptera; Reduviidae). Insect Biochem Mol Biol 43(11):1015–1020

    Article  CAS  PubMed  Google Scholar 

  • Panfilio KA (2008) Extraembryonic development in insects and the acrobatics of blastokinesis. Dev Biol 313(2):471–491

    Article  CAS  PubMed  Google Scholar 

  • Panfilio KA (2009) Late extraembryonic morphogenesis and its zen(RNAi)-induced failure in the milkweed bug Oncopeltus fasciatus. Dev Biol 333(2):297–311

    Article  CAS  PubMed  Google Scholar 

  • Panfilio KA, Angelini DR (2018) By land, air, and sea: hemipteran diversity through the genomic lens. Curr Opin Insect Sci 25:106–115

    Article  PubMed  Google Scholar 

  • Panfilio KA et al (2006) Oncopeltus fasciatus zen is essential for serosal tissue function in katatrepsis. Dev Biol 292(1):226–243

    Article  CAS  PubMed  Google Scholar 

  • Reding K et al (2019) Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Development 146(17)

    Google Scholar 

  • Ribeiro JM et al (2014) An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus. PLoS Negl Trop Dis 8(1):e2594

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribeiro L et al (2017) Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects. PLoS Genet 13(7):e1006868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roth S (2004) Gastrulation in other insects. In: Stern C (ed) Gastrulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 105–121

    Google Scholar 

  • Roth S, Schupbach T (1994) The relationship between ovarian and embryonic dorsoventral patterning in Drosophila. Development 120(8):2245–2257

    Article  CAS  PubMed  Google Scholar 

  • Sachs L et al (2015) Dynamic BMP signaling polarized by Toll patterns the dorsoventral axis in a hemimetabolous insect. Elife 4:e05502

    Article  PubMed  PubMed Central  Google Scholar 

  • Savard J et al (2006) A segmentation gene in tribolium produces a polycistronic mRNA that codes for multiple conserved peptides. Cell 126(3):559–569

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Engel C et al (2015) The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology. Nat Commun 6:7822

    Article  CAS  PubMed  Google Scholar 

  • Schofield CJ et al (2006) The future of Chagas disease control. Trends Parasitol 22(12):583–588

    Article  PubMed  Google Scholar 

  • Skoda SR et al (2018) Screwworm (Diptera: Calliphoridae) in the United States: response to and elimination of the 2016–2017 outbreak in Florida. J Med Entomol 55(4):777–786

    Article  PubMed  Google Scholar 

  • Souza-Ferreira PS et al (2014) Chitin deposition on the embryonic cuticle of Rhodnius prolixus: the reduction of CHS transcripts by CHS-dsRNA injection in females affects chitin deposition and eclosion of the first instar nymph. Insect Biochem Mol Biol 51:101–109

    Article  CAS  PubMed  Google Scholar 

  • Stahi R, Chipman AD (2016) Blastoderm segmentation in Oncopeltus fasciatus and the evolution of insect segmentation mechanisms. Proc Biol Sci 283(1840)

    Google Scholar 

  • Sterkel M et al (2017) The dose makes the poison: nutritional overload determines the life traits of blood-feeding arthropods. Trends Parasitol 33(8):633–644

    Article  PubMed  Google Scholar 

  • Telfer WH (1975) Development and physiology of the oocyte-nurse cells syncytium. Adv Insect Physiol 11:223–319

    Article  Google Scholar 

  • Tobias-Santos V et al (2019) Multiple roles of the polycistronic gene tarsaless/mille-pattes/polished-rice during embryogenesis of the kissing bug Rhodnius prolixus. bioRxiv

    Google Scholar 

  • Traverso L et al (2017) Comparative and functional triatomine genomics reveals reductions and expansions in insecticide resistance-related gene families. PLoS Negl Trop Dis 11(2):e0005313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tworzydlo W et al (2014) Morphology and ultrastructure of the germarium in panoistic ovarioles of a basal “apterygotous” insect, Thermobia domestica. Zoology (Jena) 117(3):200–206

    Article  Google Scholar 

  • Vieira PH et al (2018) Silencing of RpATG6 impaired the yolk accumulation and the biogenesis of the yolk organelles in the insect vector R. prolixus. PLoS Negl Trop Dis 12(5):e0006507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walter-Nuno AB et al (2013) Silencing of maternal heme-binding protein causes embryonic mitochondrial dysfunction and impairs embryogenesis in the blood sucking insect Rhodnius prolixus. J Biol Chem 288(41):29323–29332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walter-Nuno AB et al (2018) Silencing of iron and heme-related genes revealed a paramount role of iron in the physiology of the Hematophagous vector Rhodnius prolixus. Front Genet 9:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weisbrod A et al (2013) Evolution of the insect terminal patterning system--insights from the milkweed bug, Oncopeltus fasciatus. Dev Biol 380(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1960) The epidermal cell and the metamorphosis of insects. Nature 188:358–359

    Article  CAS  PubMed  Google Scholar 

  • Wigglesworth VB (1965) Insect hormones. Endeavour 24:21–26

    Article  CAS  PubMed  Google Scholar 

  • Zeh DW et al (1989) Ovipositors, Amnions and eggshell architecture in the diversification of terrestrial arthropods. Q Rev Biol 64:147–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Nunes-da-Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tobias-Santos, V., Pane, A., Berni, M., Araujo, H.M., Nunes-da-Fonseca, R. (2021). Embryonic Development of the Kissing Bug Rhodnius prolixus. In: Guarneri, A., Lorenzo, M. (eds) Triatominae - The Biology of Chagas Disease Vectors . Entomology in Focus, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-64548-9_5

Download citation

Publish with us

Policies and ethics