Skip to main content

The Physiology of Sperm Transfer and Egg Production in Vectors of Chagas Disease with Particular Reference to Rhodnius prolixus

  • Chapter
  • First Online:
Triatominae - The Biology of Chagas Disease Vectors

Part of the book series: Entomology in Focus ((ENFO,volume 5))

Abstract

Rhodnius prolixus has served since the early part of the last century as an ideal model to explore the physiology of blood sucking insects. Further, comparative studies indicate that the physiological processes described in this insect apply to Triatominae in general. This chapter focuses on the physiology and anatomy associated with two biological processes that occur in adults, sperm transfer during copulation and the endocrine control of egg production following feeding. With respect to sperm transfer, it is now known based on observations reported here that R. prolixus does not possess a spermatophore sac that everts into the vagina. Instead, the aedeagus delivers free sperm directly to the base of the common oviduct, and the sperm start their migration to the spermathecae before copulation ends. This information will help to clarify the role of male secretions during copulation. With respect to egg production, it has been observed that (1) the experimental manipulations involving the corporis cardiaca (CC) and the corpus allatum (CA) also affect the major neurohaemal site in the cephalic aorta next to these structures, (2) there is a significant sensory component for egg production provided by the abdominal pressure receptors which are able to continually monitor crop size and (3) circulation through the cephalic aorta is required for egg production after feeding. These factors give rise to a working hypothesis that integrates the endocrine, nervous and circulatory systems at the level of the cephalic aorta – a possible vascular portal system in the female insect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anwyl R (1972) The structure and properties of an abdominal stretch receptor in Rhodnius prolixus. J Insect Physiol 18:2143–2153

    Article  Google Scholar 

  • Avila FW, Sirot LK, La Flamme BA, Rubinstein CD, Wolfner MF (2011) Insect seminal fluid proteins: identification and function. Annu Rev Entomol 56:21–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett-Clark HC (1963) The control of meal size in the blood sucking bug, Rhodnius polixus. J Exp Biol 40:741–750

    Article  Google Scholar 

  • Buxton PA (1930) The biology of a blood-sucking bug, Rhodnius prolixus. Trans R Entomol Soc Lond 78:227–256

    Article  Google Scholar 

  • Chiang RG (1998) Partial localization of a brain factor inhibiting egg production in the blood-feeding insect, Rhodnius prolixus. Arch Insect Biochem Physiol 39:126–131

    Article  CAS  Google Scholar 

  • Chiang RG (2000) Neural inhibition of the corpus allatum in the last larval instar differs from that in adults in the blood-feeding insect, Rhodnius prolixus. Arch Insect Biochem Physiol 44:1–6

    Article  CAS  PubMed  Google Scholar 

  • Chiang RG (2010) A newly discovered sperm transport system in the female of Lygaeidae bugs. Physiol Entomol 35:87–92

    Article  Google Scholar 

  • Chiang RG, Chiang JA (2010) Feeding through artificial membranes reduces fecundity for females of the blood-feeding insect, Rhodnius prolixus. Arch Insect Biochem Physiol 74:103–113

    Article  PubMed  Google Scholar 

  • Chiang RG, Chiang JA (2017a) Reproductive physiology in the blood feeding insect, Rhodnius prolixus, from copulation to the control of egg production. J Insect Physiol 97:27–37

    Article  CAS  PubMed  Google Scholar 

  • Chiang RG, Chiang JA (2017b) Functional anatomy of the external and internal reproductive structures in insect vectors of Chagas disease with particular reference to Rhodnius prolixus. In: Shields VDC (ed) Biological control of pest and vector insects. InTech, Rijeka

    Google Scholar 

  • Chiang RG, Davey KG (1988) A novel receptor capable of monitoring applied pressure in the abdomen of an insect. Science 241:1665–1667

    Article  CAS  PubMed  Google Scholar 

  • Chiang RG, Davey KG (1990) Circulation is required for egg production in the insect, Rhodnius prolixus. Invertbr Reprod Dev 18:177–183

    Article  Google Scholar 

  • Chiang RG, O’Donnell MJ (2009) Functional anatomy of vagina muscles in the blood-feeding insect, Rhodnius prolixus. Arthropod Struct Dev 38:499–507

    Article  CAS  PubMed  Google Scholar 

  • Chiang RG, Chiang JA, Davey KG (1989) Electrophysiology and ultrastructure of axons of the neurosecretory cells associated with the cephalic aorta of Rhodnius prolixus. J Insect Physiol 35:209–222

    Article  Google Scholar 

  • Chiang RG, Chiang JA, Davey KG (1990) Structure of the abdominal receptor responsive to internally applied pressure in the blood-feeding insect, Rhodnius prolixus. Cell Tissue Res 261:583–587

    Article  Google Scholar 

  • Chiang RG, Chiang JA, Davey KG (1992) A sensory input inhibiting heart rate in an insect, Rhodnius prolixus. Experientia 48:1122–1125

    Article  Google Scholar 

  • Chiang RG, Chiang JA, Sarquis O, Lima MM (2012) Morphology of reproductive accessory glands in eight species of blood-feeding Hemiptera (Hemiptera, Reduviidae) insect vectors of Chagas disease. Acta Trop 122:196–204

    Article  CAS  PubMed  Google Scholar 

  • Chiang RG, Chiang JA, Hoogendoorn H, Lima MM (2013) Exploring the role of rhodtestolin, a cardio-inhibitor from the testes of Rhodnius prolixus, in relation to the structure and function of reproductive organs in insect vectors of Chagas disease. Insects 4:593–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Davey KG (1958) The migration of spermatozoa in the female of Rhodnius prolixus Stål. J Exp Biol 35:694–701

    Article  Google Scholar 

  • Davey KG (1959) Spermatophore production in Rhodnius prolixus. Q J Microsc Sci 100:221–230

    Google Scholar 

  • Davey KG (1967) Some consequences of copulation in Rhodnius prolixus. J Insect Physiol 13:1629–1636

    Article  Google Scholar 

  • Davey KG (1982) The effect of severing abdominal nerves on egg production in Rhodnius prolixus Stål. J Insect Physiol 28:509–512

    Article  Google Scholar 

  • Davey KG (1983) Hormonal integration governing the ovary. In: Downer RGH, Laufer H (eds) Endocrinology of insects. Alan R. Liss, New York, pp 251–258

    Google Scholar 

  • Davey KG (1987a) Effect of the brain and corpus cardiacum on egg production in Rhodnius prolixus. Arch Insect Biochem Physiol 4:243–249

    Article  CAS  Google Scholar 

  • Davey KG (1987b) Inputs to the hormonal control of egg development in Rhodnius prolixus. Mem Inst Oswaldo Cruz, Rio de Janeiro 82(Suppl III):103–108

    Article  Google Scholar 

  • Davey KG (2007) The interaction of feeding and mating in the hormonal control of egg production in Rhodnius prolixus. J Insect Physiol 53:208–215

    Article  CAS  PubMed  Google Scholar 

  • Davey KG, Heubner E (1974) The response of the follicle cells of Rhodnius prolixus to juvenile hormone and antigonadotropin in vitro. Can J Zool 52:1407–1412

    Article  CAS  PubMed  Google Scholar 

  • Davey KG, Kuster JE (1981) The source of an antigonadotropin in the female of Rhodnius prolixus Stål. Can J Zool 59:761–764

    Article  Google Scholar 

  • Davey KG, Maimets I-K, Ruegg RP (1986) The relationship between crop size and egg production in Rhodnius prolixus. Can J Zool 64:2654–2657

    Article  Google Scholar 

  • Friend WG, Smith JJB (1977) Factors affecting feeding by bloodsucking insects. Annu Rev Entomol 22:309–331

    Article  CAS  PubMed  Google Scholar 

  • Friend WG, Choy CTH, Cartwright E (1965) The effect of nutrient intake on the development and the egg production of Rhodnius prolixus Ståhl (Hemiptera: Reduviidae). Can J Zool 43:891–904

    Article  CAS  PubMed  Google Scholar 

  • Galvão C (2014) Vetores da doença de chagas no Brasil [online]. Curitiba: Sociedade Brasileira de Zoologia, 2014, 289p. Zoologia: guias e manuais de identificação series. isbn 978-85-98203-09-6

    Google Scholar 

  • Gomes JE, Azambuja P, Garcia ES (1990) Comparative studies on the growth and reproductive performances of Rhodnius prolixus reared on different blood sources. Mem Inst Oswaldo Cruz 85:299–304

    Article  CAS  PubMed  Google Scholar 

  • Hadley ME, Levine JE (2007) Endocrinology, 6th edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Huebner E, Davey KG (1973) An antigonadotropin from the ovaries of the insect Rhodnius prolixus Stål. Can J Zool 51:113–120

    Article  CAS  PubMed  Google Scholar 

  • Khalifa A (1950) Spermatophore production and egg-laying behaviour in Rhodnius prolixus. Parasitology 40:283–289

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg M, Chiang RG (2006) The effects of cutting the dorsal vessel on digestion in the blood-feeding insect, Rhodnius prolixus. Can Soc Zool Bull 37(#2):138

    Google Scholar 

  • Kuster JE, Davey KG (1981) Fine structure of the abdominal neurosecretory organs of Rhodnius prolixus Stål. Can J Zool 59:765–770

    Article  Google Scholar 

  • Lent H, Wygodzinsky P (1979) Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bull Am Mus Nat His 163:123–520

    Google Scholar 

  • Lima MM, Jurberg P, de Almeida JR (1986) Behavior of Triatomines (Hemiptera: Reduviidae) vectors of Chagas’ disease. I. Courtship and copulation of Panstrongylus megistus (Burm., 1835) in the laboratory. Mem Inst Oswaldo Cruz 81:1–5

    Article  CAS  PubMed  Google Scholar 

  • Liu TP, Davey KG (1974) Partial characterization of a proposed antigonadotropin from the ovaries of the insect Rhodnius prolixus Stål. Gen Comp Endocrinol 24:405–408

    Article  CAS  PubMed  Google Scholar 

  • Locke M (1996) Obituary: Sir Vincent Brian Wigglesworth, C.B.E. 17 April 1899–12 February 1994, Biographical Memoirs of Fellows of the Royal Society

    Google Scholar 

  • Manrique G, Lazzari CR (1994) Sexual behaviour and stridulation during mating in Triatoma infestans (Hemiptera: Reduviidae). Mem Inst Oswaldo Cruz 89:629–633

    Article  CAS  PubMed  Google Scholar 

  • Manrique G, Lorenzo M (2012) The sexual behaviour of Chagas disease vectors: chemical signals mediating communication between male and female Triatomine bugs. Psyche Article ID 862891, 8 pages

    Google Scholar 

  • Martens JD, Chiang RG (2010) Testes extracts inhibit heart contractions in females of the blood-feeding insect, Rhodnius prolixus. Insect Sci 7:386–392

    Google Scholar 

  • Moreno-Garcia M, Cordero C (2008) On the function of male genital claspers in Stenomacra marginella (Heteroptera: Largidae). J Ethol 26:255–260

    Article  Google Scholar 

  • Mulye H, Davey KG (1995) The feeding stimulus in Rhodnius prolixus is transmitted to the brain by a humoral factor. J Exp Biol 198:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Myers SS, Buckley TR, Holwell GI (2016) Male genital claspers influence female mate acceptance in the stick insect Clitarchus hookeri. Behav Ecol Sociobiol 70:1547–1556

    Article  Google Scholar 

  • Nascimento JD, Ribeiro AR, Almeida LA, de Oliveira J, Mendonça VJ, Cilense M, da Rosa JA (2017) Morphology of the spermathecae of twelve species of Triatominae (Hemiptera, Reduviidae) vectors of Chagas disease. Acta Trop 176:440–445

    Article  PubMed  Google Scholar 

  • Orchard I, Ruegg RP, Davey KG (1983) The role of central aminergic neurons in the action of 20-hydroxyecdysone on neurosecretory cells of Rhodnius prolixus. J Insect Physiol 29:387–391

    Article  CAS  Google Scholar 

  • Patchin S, Davey KG (1968) The histology of vitellogenesis in Rhodnius prolixus. J Insect Physiol 14:1815–1820

    Article  Google Scholar 

  • Pires HHR, Lorenzo MG, Lazzari CR, Diotaiuti L, Manrique G (2004) The sexual behaviour of Panstrongylus megistus (Hemiptera, Reduviidae): an experimental study. Mem Inst Oswaldo Cruz 99:295–300

    Article  PubMed  Google Scholar 

  • Pratt GE, Davey KG (1972) The corpus allatum and oogenesis in Rhodnius prolixus (Stål). I. The effects of allatectomy. J Exp Biol 56:201–237

    Article  Google Scholar 

  • Ruegg RP, Davey KG (1979) The effect of C18 juvenile hormone and altosid on the efficiency of egg production in Rhodnius prolixus. Int J Invertbr Reprod 1:3–8

    Article  CAS  Google Scholar 

  • Ruegg RP, Orchard I, Davey KG (1982) 20-hydroxy-ecdysone as a modulator of electrical activity in neurosecretory cells of Rhodnius prolixus. J Insect Physiol 28:243–248

    Article  CAS  Google Scholar 

  • Schilman PE, Nunez JA, Lazzari CR (1996) Attributes of oviposition substrates affect fecundity in Rhodnius prolixus. J Insect Physiol 42:837–841

    Article  CAS  Google Scholar 

  • Scudder GGE (1971) Comparative morphology of insect genitalia. Annu Rev Entomol 16:379–406

    Article  Google Scholar 

  • Sirot LK, LaFlamme BA, Sitnik JL, Rubinstein CD, Avila FW, Chow CY, Wolfner MF (2009) Molecular social interactions: Drosophila melanogaster seminal fluid proteins as a case study. Adv Genet 68:23–56

    Article  CAS  PubMed  Google Scholar 

  • Uribe C (1927) On the biology and life history of Rhodnius prolixus Stahl. J Parasitol 13:129–136

    Article  Google Scholar 

  • Villalobos-Sambucaro MJ, Nouzova M, Ramirez CE, Alzugaray ME, Fernandez-Lima F, Ronderos JR, Noriega FG (2020) The juvenile hormone described in Rhodnius prolixus by Wigglesworth is juvenile hormone III skipped bisepoxide. Sci Rep 10(1):1–9

    Article  Google Scholar 

  • Vitta ACR, Lorenzo MG (2009) Copulation and mate guarding behavior in Triatoma brasiliensis (Hemiptera: Reduviidae). J Med Entomol 46:789–795

    Article  PubMed  Google Scholar 

  • WHO (2017). Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis). Accessed 11 Apr 2019

  • Wigglesworth VB (1934) The physiology of ecdysis on Rhodnius prolixus (Hemiptera). II. Factors controlling moulting and “metamorphosis”. Q J Microsc Sci 77:191–222

    Google Scholar 

  • Wigglesworth VB (1936) The function of the corpus allatum in the growth and reproduction of Rhodnius prolixus. Q J Microsc Sci 79:91–121

    Google Scholar 

  • Wigglesworth VB (1974) The principles of insect physiology, 7th edn. Wiley, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gary Chiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiang, R.G., Chiang, J.A. (2021). The Physiology of Sperm Transfer and Egg Production in Vectors of Chagas Disease with Particular Reference to Rhodnius prolixus. In: Guarneri, A., Lorenzo, M. (eds) Triatominae - The Biology of Chagas Disease Vectors . Entomology in Focus, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-64548-9_13

Download citation

Publish with us

Policies and ethics