Skip to main content

Post-Quantum Hardware Security

Physical Security in Classic vs. Quantum Worlds

  • Chapter
  • First Online:
Emerging Topics in Hardware Security

Abstract

This chapter concerns how the evolution of quantum technology could influence the field of hardware security. Besides this question, the impact of hardware security on the quantum systems, and in particular, quantum cryptosystems, is discussed in detail. This impact goes beyond the direct effect of quantum computers on the security of cryptosystems since it also encompasses the risk imposed by physical attacks known in the classic world. In this respect, the main message conveyed by this chapter is that post-quantum cryptosystems can suffer from not only quantum-enhanced attacks, but also classic physical attacks; hence, in their design, it is crucial to revisit the adversary models and design flows.

Part of this study has been carried out, when Fatemeh Ganji was with Florida Institute for Cybersecurity Research, University of Florida.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that this section provides a gentle introduction to the concepts studied in the quantum mechanics and quantum computation. For more formal definitions and discussions, we refer the readers to [65].

  2. 2.

    \(S=\frac {K}{n}\), where K is the order of the information within the challenge and n is the cumulative number of photons.

References

  1. G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, Y.K. Liu, C. Miller, D. Moody, R. Peralta et al.: Status report on the first round of the NIST post-quantum cryptography standardization process. US Department of Commerce, National Institute of Standards and Technology, Maryland (2019)

    Google Scholar 

  2. A. Alvarez, W. Zhao, M. Alioto, 14.3 15fjbit static physically unclonable functions for secure chip identification with < 2% native bit instability and 140x inter/intra PUF hamming distance separation in 65nm, in 2015 IEEE International Solid-State Circuits Conference - (ISSCC) (IEEE, Piscataway, 2015), pp. 1–3

    Google Scholar 

  3. M. Arapinis, M. Delavar, M. Doosti, E. Kashefi, Quantum physical unclonable functions: possibilities and impossibilities (2019)

    Google Scholar 

  4. R. Arnon-Friedman, A. Ta-Shma, Limits of privacy amplification against nonsignaling memory attacks. Phys. Rev. A 86(6), 062333 (2012)

    Google Scholar 

  5. P. Bayon, L. Bossuet, A. Aubert, V. Fischer, F. Poucheret, B. Robisson, P. Maurine, Contactless electromagnetic active attack on ring oscillator based true random number generator, in International Workshop on Constructive Side-Channel Analysis and Secure Design (Springer, Berlin, 2012), pp. 151–166

    Google Scholar 

  6. S. Beauregard, Circuit for Shor’s algorithm using 2n+ 3 qubits. Quantum Inf. Comput. 3(2), 175–185 (2003)

    MathSciNet  MATH  Google Scholar 

  7. D.J. Bernstein, T. Lange, Post-quantum cryptography. Nature 549(7671), 188–194 (2017)

    Article  Google Scholar 

  8. N. Bindel, J. Buchmann, J. Krämer, Lattice-based signature schemes and their sensitivity to fault attacks, in 2016 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, Santa Barbara, 2016), pp. 63–77

    Google Scholar 

  9. J. Bouda, M. Pivoluska, M. Plesch, C. Wilmott, Weak randomness seriously limits the security of quantum key distribution. Phy. Rev. A 86(6), 062308 (2012)

    Google Scholar 

  10. S. Buchovecká, J. Hlaváč, Frequency injection attack on a random number generator, in 2013 IEEE 16th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS) (IEEE, Karlovy Vary, 2013), pp. 128–130

    Google Scholar 

  11. Y. Cao, V. Rožić, B. Yang, J. Balasch, I. Verbauwhede, Exploring active manipulation attacks on the TERO random number generator, in 2016 IEEE 59th International Midwest Symposium on Circuits and Systems (MWSCAS) (IEEE, Abu Dhabi, 2016), pp. 1–4

    Google Scholar 

  12. Z. Cao, H. Zhou, X. Yuan, X. Ma, Source-independent quantum random number generation. Phys. Rev. X 6(1), 011020 (2016)

    Google Scholar 

  13. L. Castelnovi, A. Martinelli, T. Prest, Grafting trees: a fault attack against the sphincs framework, in Proceedings of PQCrypto (Springer International Publishing, Cham, 2018), pp. 165–184

    MATH  Google Scholar 

  14. P.L. Cayrel, P. Dusart, McEliece/Niederreiter PKC: sensitivity to fault injection, in 2010 5th International Conference on Future Information Technology (IEEE, Changsha, 2010), pp. 1–6. https://doi.org/10.1109/FUTURETECH.2010.5482663

  15. L. Chen, L. Chen, S. Jordan, Y.K. Liu, D. Moody, R. Peralta, R. Perlner, D. Smith-Tone, Report on post-quantum cryptography, vol. 12. US Department of Commerce, National Institute of Standards and Technology, USA (2016)

    Google Scholar 

  16. S. Chowdhury, A. Covic, R.Y. Acharya, S. Dupee, F. Ganji, D. Forte, Physical security in the post-quantum era: a survey on side-channel analysis, random number generators, and physically unclonable functions (2020). Preprint, arXiv:2005.04344

    Google Scholar 

  17. M. Coudron, H. Yuen, Infinite randomness expansion with a constant number of devices, in Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC 2014 (Association for Computing Machinery, New York, 2014), pp. 427–436

    MATH  Google Scholar 

  18. P. Czypek, Implementing multivariate quadratic public key signature schemes on embedded devices (2012)

    Google Scholar 

  19. J.P. D’Anvers, M. Tiepelt, F. Vercauteren, I. Verbauwhede, Timing attacks on error correcting codes in post-quantum schemes. Cryptology ePrint Archive, Report 2019/292 (2019). https://eprint.iacr.org/2019/292. Accessed 2 May 2020

  20. L. David, A. Wool, Poly-logarithmic side channel rank estimation via exponential sampling, in Topics in Cryptology – CT-RSA 2019, ed. by M. Matsui (ed.) (Springer International Publishing, Cham, 2019), pp. 330–349

    Chapter  Google Scholar 

  21. A. De, C. Portmann, T. Vidick, R. Renner, Trevisan’s extractor in the presence of quantum side information. SIAM J. Comput. 41(4), 915–940 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Deepa, G. SriTeja, S. Venkateswarlu, An overview of acoustic side-channel attack. Int. J. Comput. Sci. Commun. Netw. 3(1), 15–20 (2013)

    Google Scholar 

  23. J. Fan, I. Verbauwhede, An Updated Survey on Secure ECC Implementations: Attacks, Countermeasures and Cost (Springer, Berlin, 2012), pp. 265–282

    MATH  Google Scholar 

  24. L. Fladung, G.M. Nikolopoulos, G. Alber, M. Fischlin, Intercept-resend emulation attacks against a continuous-variable quantum authentication protocol with physical unclonable keys. Cryptography 3(4), 25 (2019)

    Google Scholar 

  25. F. Ganji, S. Tajik, J.P. Seifert, PAC learning of arbiter PUFs. J. Cryptogr. Eng. 6 (2014). https://doi.org/10.1007/s13389-016-0119-4

  26. F. Ganji, S. Tajik, J.P. Seifert, Why attackers win: on the learnability of XOR arbiter PUFs, in Trust and Trustworthy Computing, ed. by M. Conti, M. Schunter, I. Askoxylakis (Springer International Publishing, Cham, 2015), pp. 22–39

    Chapter  Google Scholar 

  27. B. Gassend, D. Clarke, M. van Dijk, S. Devadas, Silicon physical random functions, in Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002 (Association for Computing Machinery, New York, 2002), pp. 148–160

    Google Scholar 

  28. B. Gassend, D. Lim, D. Clarke, M. van Dijk, S. Devadas, Identification and authentication of integrated circuits. Concurr. Comput. Pract. Exp. 16(11), 1077–1098 (2004)

    Article  Google Scholar 

  29. I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2(1), 1–6 (2011)

    Article  Google Scholar 

  30. G. Gianfelici, H. Kampermann, D. Bruß, Theoretical framework for physical unclonable functions, including quantum readout. Phys. Rev. A 101, 042337-1–042337-12 (2020)

    Google Scholar 

  31. S.A. Goorden, M. Horstmann, A.P. Mosk, B. Škorić, P.W.H. Pinkse, Quantum-secure authentication of a physical unclonable key. Optica 1(6), 421–424 (2014)

    Article  Google Scholar 

  32. Y. Gorbenko, O. Nariezhnii, M. Krivich, Differential electromagnetic attack on cryptographies modules of a quantum random number generator, in 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T) (IEEE, Piscataway, 2017), pp. 161–167

    Google Scholar 

  33. J. Gruska, Quantum Computing, vol. 2005 (McGraw-Hill, London, 1999)

    MATH  Google Scholar 

  34. H. Gupta, S. Sural, V. Atluri, J. Vaidya, Deciphering text from touchscreen key taps, in Data and Applications Security and Privacy XXX, ed. by S. Ranise, V. Swarup (Springer International Publishing, Cham, 2016), pp. 3–18

    Chapter  Google Scholar 

  35. G. Hammouri, B. Sunar, PUF-HB: A tamper-resilient HB based authentication protocol, in Applied Cryptography and Network Security (Springer, Berlin, 2008), pp. 346–365

    Google Scholar 

  36. Y. Hashimoto, General fault attacks on multivariate public key cryptosystems. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E.96-A (2013). https://doi.org/10.1587/transfun.E96.A.196

  37. C. Helfmeier, D. Nedospasov, C. Tarnovsky, J.S. Krissler, C. Boit, J.P. Seifert, Breaking and entering through the silicon, in Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security (Association for Computing Machinery, New York, 2013), pp. 733–744

    Google Scholar 

  38. C. Herder, L. Ren, M.V. Dijk, M.D. Yu, S. Devadas, Trapdoor computational fuzzy extractors and stateless cryptographically-secure physical unclonable functions. IEEE Trans. on Dependable Secure Comput. 14(1), 65–82 (2017)

    Article  Google Scholar 

  39. M. Herrero-Collantes, J.C. Garcia-Escartin, Quantum random number generators. Rev. Mod. Phys. 89(1), 015004 (2017)

    Google Scholar 

  40. S. Heyse, A. Moradi, C. Paar, Practical power analysis attacks on software implementations of McEliece, in Post-Quantum Cryptography, ed. by N. Sendrier (Springer, Berlin, 2010), pp. 108–125

    Chapter  Google Scholar 

  41. N.J. Hopper, M. Blum, Secure human identification protocols, in Proceedings of the 7th International Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology, ASIACRYPT 2001 (Springer, Berlin, 2001), pp. 52–66

    Google Scholar 

  42. R. Impagliazzo, D. Zuckerman, How to recycle random bits, in Proceedings of FOCS, vol. 30 (IEEE, Piscataway, 1989), pp. 248–253

    Google Scholar 

  43. J. Jaffe, A first-order DPA attack against AES in counter mode with unknown initial counter, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Vienna, 2007), pp. 1–13

    MATH  Google Scholar 

  44. C. Jin, C. Herder, L. Ren, P. Nguyen, B. Fuller, S. Devadas, M. van Dijk, FPGA implementation of a cryptographically-secure PUF based on learning parity with noise. Cryptography 1(3), 23 (2017).

    Google Scholar 

  45. M.J. Kannwischer, A. Genêt, D. Butin, J. Krämer, J. Buchmann, Differential power analysis of XMSS and SPHINCS, in Constructive Side-Channel Analysis and Secure Design, ed. by J. Fan, B. Gierlichs (Springer International Publishing, Cham, 2018), pp. 168–188

    Chapter  MATH  Google Scholar 

  46. P.A. Layman, S. Chaudhry, J.G. Norman, J.R. Thomson, Electronic fingerprinting of semiconductor integrated circuits. U.S. Patent 6 738 294, Sept 2002

    Google Scholar 

  47. R.B. Leighton, M.L. Sands, The Feynman Lectures on Physics: Quantum Mechanics, vol. 3 (Addison-Wesley, Reading, 1965)

    MATH  Google Scholar 

  48. H.W. Li, S. Wang, J.Z. Huang, W. Chen, Z.Q. Yin, F.Y. Li, Z. Zhou, D. Liu, Y. Zhang, G.C. Guo, et al.: Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources. Phys. Rev. A 84(6), 062308 (2011)

    Google Scholar 

  49. H.W. Li, Z.Q. Yin, S. Wang, Y.J. Qian, W. Chen, G.C. Guo, Z.F. Han, Randomness determines practical security of bb84 quantum key distribution. Sci. Rep. 5(1), 1–8 (2015)

    Google Scholar 

  50. J. Li, M. Seok, Ultra-compact and robust physically unclonable function based on voltage-compensated proportional-to-absolute-temperature voltage generators. IEEE J. Solid-State Circuits 51(9), 2192–2202 (2016)

    Article  Google Scholar 

  51. H. Lohrke, S. Tajik, T. Krachenfels, C. Boit, J.P. Seifert, Key extraction using thermal laser stimulation. IACR Trans. Cryptogr. Hardware Embed. Syst. 4, 573–595 (2018)

    Article  Google Scholar 

  52. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination. Nat. Photonics 4(10), 686 (2010)

    Google Scholar 

  53. R. Maes, Physically Unclonable Functions: Constructions, Properties and Applications (Springer Science & Business Media, Berlin, 2013)

    Book  MATH  Google Scholar 

  54. A.T. Markettos, S.W. Moore, The frequency injection attack on ring-oscillator-based true random number generators, in International Workshop on Cryptographic Hardware and Embedded Systems (Springer, Berlin, 2009), pp. 317–331

    Google Scholar 

  55. H. Martin, T. Korak, E. San Millán, M. Hutter, Fault attacks on STRNGs: impact of glitches, temperature, and underpowering on randomness. IEEE Trans. Inf. Forensics Secur. 10(2), 266–277 (2014)

    Article  Google Scholar 

  56. D.P. Martin, A. Montanaro, E. Oswald, D. Shepherd, Quantum key search with side channel advice, in Selected Areas in Cryptography – SAC 2017, ed. by C. Adams, J. Camenisch (Springer International Publishing, Cham, 2018), pp. 407–422

    Chapter  Google Scholar 

  57. I. Marvian, S. Lloyd, Universal quantum emulator (2016)

    Google Scholar 

  58. C.A. Miller, Y. Shi, Universal security for randomness expansion from the spot-checking protocol. SIAM J. Comput. 46(4), 1304–1335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Misoczki, J.P. Tillich, N. Sendrier, P.S.L.M. Barreto, MDPC-McEliece: new McEliece variants from moderate density parity-check codes, in IEEE International Symposium on Information Theory - ISIT 2013 (IEEE, Istanbul, 2013), pp. 2069–2073

    Google Scholar 

  60. H.G. Molter, M. Stöttinger, A. Shoufan, F. Strenzke, A simple power analysis attack on a McEliece cryptoprocessor. J. Cryptogr. Eng. 1(1), 29–36 (2011)

    Article  Google Scholar 

  61. A. Montanaro, Quantum algorithms: an overview. NPJ Quantum Inf. 2(1), 1–8 (2016)

    Article  Google Scholar 

  62. M. Mosca, Quantum algorithms (2008)

    Google Scholar 

  63. S. Myung, K. Yang, J. Kim, Quasi-cyclic LDPC codes for fast encoding. IEEE Trans. Inf. Theory 51(8), 2894–2901 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. S. Narain, A. Sanatinia, G. Noubir, Single-stroke language-agnostic keylogging using stereo-microphones and domain specific machine learning, in Proceedings of the 2014 ACM Conference on Security and Privacy in Wireless & Mobile Networks, WiSec 2014 (Association for Computing Machinery, Oxford, 2014), pp. 201–212

    Google Scholar 

  65. M.A. Nielsen, I.L. Chuang, I.L. Chuang, Quantum Computation and Quantum Information, Chap. 2 (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  66. G.M. Nikolopoulos, Continuous-variable quantum authentication of physical unclonable keys: security against an emulation attack. Phys. Rev. A 97(1), 012324 (2018)

    Google Scholar 

  67. G.M. Nikolopoulos, E. Diamanti, Continuous-variable quantum authentication of physical unclonable keys. Nat. Sci. Rep. 7, 46047 (2017)

    Google Scholar 

  68. S. Ordas, L. Guillaume-Sage, P. Maurine, EM injection: fault model and locality, in Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, Saint Malo, 2015), pp. 3–13

    Google Scholar 

  69. R. Pappu, B. Recht, J. Taylor, N. Gershenfeld, Physical one-way functions. Science 297(5589), 2026–2030 (2002). https://doi.org/10.1126/science.1074376

    Article  Google Scholar 

  70. M. Petrvalsky, T. Richmond, M. Drutarovsky, P.L. Cayrel, V. Fischer, Differential power analysis attack on the secure bit permutation in the McEliece cryptosystem, in 2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA) (IEEE, Kosice, 2016), pp. 132–137

    Google Scholar 

  71. T. Richmond, M. Petrvalsky, M. Drutarovsky, A side-channel attack against the secret permutation on an embedded McEliece cryptosystem (2015). https://hal-ujm.archives-ouvertes.fr/ujm-01186639

  72. M. Rossi, M. Hamburg, M. Hutter, M.E. Marson, A side-channel assisted cryptanalytic attack against QcBits, in Cryptographic Hardware and Embedded Systems – CHES 2017, ed. by W. Fischer, N. Homma (Springer International Publishing, Cham, 2017), pp. 3–23

    Chapter  Google Scholar 

  73. U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, J. Schmidhuber, Modeling attacks on physical unclonable functions, in Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010 (Association for Computing Machinery, New York, 2010), pp. 237–249. https://doi.org/10.1145/1866307.1866335

    Google Scholar 

  74. J.M. Schmidt, M. Hutter, Optical and EM Fault-Attacks on CRT-Based RSA: Concrete Results (Verlag der Technischen Universität Graz, Graz, 2007), pp. 61–67

    Google Scholar 

  75. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  76. B.Y. Sim, J. Kwon, K.Y. Choi, J. Cho, A. Park, D.G. Han, Novel side-channel attacks on quasi-cyclic code-based cryptography. IACR Trans. Cryptogr. Hardware Embed. Syst. 2019(4), 180–212 (2019)

    Article  Google Scholar 

  77. M. Šimka, P. Komenského, Active non-invasive attack on true random number generator, in 6th PhD Student Conference and Scientific and Technical Competition of Students of FEI TU Košice, Košice, Slovakia. Citeseer, Slovakia (2006), pp. 129–130

    Google Scholar 

  78. H. Singh, Code based cryptography: classic McEliece (2019)

    Google Scholar 

  79. B. Škorić, Quantum readout of physical unclonable functions. Int. J. Quantum Inf. 10(01), 1250001 (2012)

    Google Scholar 

  80. B. Škorić, A.P. Mosk, P.W. Pinkse, Security of quantum-readout PUFs against quadrature-based challenge-estimation attacks. Int. J. Quantum Inf. 11(04), 1350041 (2013)

    Google Scholar 

  81. R. Spreitzer, Pin skimming: exploiting the ambient-light sensor in mobile devices. in 4th Annual ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM) (Association of Computing Machinery, New York, 2014), pp. 51–62. https://doi.org/10.1145/2666620.2666622. In conjunction with the 21st ACM Conference on Computer and Communications Security (CCS)

  82. F.X. Standaert, Introduction to Side-Channel Attacks (Springer US, Boston, 2010), pp. 27–42

    Google Scholar 

  83. M. Stipčević, Preventing detector blinding attack and other random number generator attacks on quantum cryptography by use of an explicit random number generator (2014)

    Google Scholar 

  84. M. Stipčević, Ç.K. Koç, True random number generators, in Open Problems in Mathematics and Computational Science (Springer, Cham, 2014), pp. 275–315

    Book  MATH  Google Scholar 

  85. F. Strenzke, A timing attack against the secret permutation in the McEliece PKC, in Post-Quantum Cryptography, ed. by N. Sendrier (Springer, Berlin, 2010), pp. 95–107

    Chapter  Google Scholar 

  86. F. Strenzke, Timing attacks against the syndrome inversion in code-based cryptosystems, in Post-Quantum Cryptography, ed. by P. Gaborit (Springer, Berlin, 2013), pp. 217–230

    Chapter  Google Scholar 

  87. F. Strenzke, E. Tews, H.G. Molter, R. Overbeck, A. Shoufan, Side channels in the McEliece PKC, in International Workshop on Post-Quantum Cryptography (Springer, Berlin, 2008), pp. 216–229

    MATH  Google Scholar 

  88. G.E. Suh, S. Devadas, Physical unclonable functions for device authentication and secret key generation, in Proceedings of the 44th Annual Design Automation Conference, DAC 2007 (Association for Computing Machinery, New York, 2007), pp. 9–14. https://doi.org/10.1145/1278480.1278484

    Google Scholar 

  89. B. Sunar, W.J. Martin, D.R. Stinson, A provably secure true random number generator with built-in tolerance to active attacks. IEEE Trans. Comput. 56(1), 109–119 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  90. M. Taha, T. Eisenbarth, Implementation attacks on post-quantum cryptographic schemes. Cryptology ePrint Archive, Report 2015/1083 (2015). https://eprint.iacr.org/2015/1083

  91. S. Tajik, H. Lohrke, F. Ganji, J.P. Seifert, C. Boit, Laser fault attack on physically unclonable functions, in 2015 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) (IEEE, Piscataway, 2015), pp. 85–96

    Book  Google Scholar 

  92. S. Tajik, E. Dietz, S. Frohmann, H. Dittrich, D. Nedospasov, C. Helfmeier, J.P. Seifert, C. Boit, H.W. Hübers, Photonic side-channel analysis of arbiter PUFs. J. Cryptol. 30(2), 550–571 (2017)

    Article  MATH  Google Scholar 

  93. S. Tajik, H. Lohrke, J.P. Seifert, C. Boit, On the power of optical contactless probing: attacking bitstream encryption of FPGAs, in Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (ACM, Dallas, 2017), pp. 1661–1674

    Google Scholar 

  94. Q. Tang, C. Zhou, W. Choi, G. Kang, J. Park, K.K. Parhi, C.H. Kim, A dram based physical unclonable function capable of generating> 10 32 challenge response pairs per 1kbit array for secure chip authentication, in 2017 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, Austin, 2017), pp. 1–4

    Google Scholar 

  95. J. Thewes, C. Lüders, M. Aßmann, Eavesdropping attack on a trusted continuous-variable quantum random-number generator. Phys. Rev. A 100(5), 052318 (2019)

    Google Scholar 

  96. I. von Maurich, T. Güneysu, Towards side-channel resistant implementations of QC-MDPC McEliece encryption on constrained devices, in Post-Quantum Cryptography, ed. by M. Mosca (Springer International Publishing, Cham, 2014), pp. 266–282

    Chapter  Google Scholar 

  97. R. Villanueva-Polanco, A comprehensive study of the key enumeration problem. Entropy 21(10), 972 (2019)

    Google Scholar 

  98. Y. Wang, X. Xi, M. Orshansky, Lattice PUF: a strong physical unclonable function provably secure against machine learning attacks (2019)

    Google Scholar 

  99. H. Yi, W. Li, On the importance of checking multivariate public key cryptography for side-channel attacks: the case of enTTS scheme. Comput. J. 60, 1–13 (2017). https://doi.org/10.1093/comjnl/bxx010

    Article  MathSciNet  Google Scholar 

  100. J.L. Zhang, G. Qu, Y.Q. Lv, Q. Zhou, A survey on silicon PUFs and recent advances in ring oscillator PUFs. J. Comput. Sci. Technol. 29(4), 664–678 (2014)

    Article  Google Scholar 

  101. Y. Zhao, C.H.F. Fung, B. Qi, C. Chen, H.K. Lo, Quantum hacking: experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the support of AFOSR under award number FA 9550-14-1-0351. We would like to thank Spencer Dupee, who has contributed to the survey [16], which is the extended version of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenic Forte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Covic, A., Chowdhury, S., Acharya, R.Y., Ganji, F., Forte, D. (2021). Post-Quantum Hardware Security. In: Tehranipoor, M. (eds) Emerging Topics in Hardware Security . Springer, Cham. https://doi.org/10.1007/978-3-030-64448-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64448-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64447-5

  • Online ISBN: 978-3-030-64448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics