Skip to main content

Asynchronous Circuits and Their Applications in Hardware Security

  • Chapter
  • First Online:
Emerging Topics in Hardware Security
  • 1041 Accesses

Abstract

Asynchronous circuits are increasingly used as an efficient countermeasure for a wide range of threats in the microelectronics industry. This chapter provides a tutorial on the basic concepts of asynchronous design, with an elaboration on their potential benefits and drawbacks. The chapter also provides a literature survey on applying asynchronous circuits to hardware security, potential security flaws in asynchronous design, and a discussion on proposed mitigation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Cost of Malicious Cyber Activity to the U.S. Economy, The Council of Economic Advisers, February 2018

    Google Scholar 

  2. Y. Zhou, D. Feng, Side-channel attacks: Ten years after its publication and the impacts on cryptographic module security testing. IACR Cryptol. ePrint Arch. 2005, 388 (2005)

    Google Scholar 

  3. M. Tehranipoor, C. Wang (eds.), Introduction to Hardware Security and Trust (Springer, 2011)

    Google Scholar 

  4. R. Focardi, R. Gorrieri (eds.), Foundations of Security Analysis and Design: Tutorial Lectures (Springer, 2003)

    Google Scholar 

  5. T. Popp, S. Mangard, E. Oswald, Power analysis attacks and countermeasures. IEEE Des. Test Comput. 24(6), 535–543 (2007)

    Article  Google Scholar 

  6. P. Kocher, J. Jaffe, B. Jun, Differential power analysis. Proceedings of the 19th annual international cryptology conference on Advances in Cryptology, in CRYPTO ’99, (2017), pp. 388–397

    Google Scholar 

  7. S. Mangard, E. Oswald, T. Popp, Power Analysis Attacks: Revealing the Secrets of Smart Cards (Springer, New York, 2010)

    MATH  Google Scholar 

  8. W. Shan, F. Xingyuan, X. Zhipeng, A secure reconfigurable crypto IC with countermeasures against SPA, DPA, and EMA. IEEE Trans. Comp. Aided Des. Integr. Circ. Syst. 34(7), 1201–1205 (2015)

    Article  Google Scholar 

  9. C. Giraud, R.S.A. An, Implementation resistant to fault attacks and to simple power analysis. IEEE Trans. Comput. 55(9), 1116–1120 (2006)

    Article  Google Scholar 

  10. G. Ratanpal, R. Williams, T. Blalock, An on-chip signal suppression countermeasure to power analysis attacks. IEEE Trans. Dependable Secure Comput. 1(3), 179–189 (2004)

    Article  Google Scholar 

  11. J. Sparsø, Principles of Asynchronous Circuit Design: A Systems Perspective (Kluwer, Boston, 2001)

    Book  Google Scholar 

  12. J. Sparsø, Introduction to Asynchronous Circuit Design (DTU Compute, Technical University of Denmark, 2020)

    Google Scholar 

  13. E. Yahya, M. Renaudin, QDI latches characteristics and asynchronous linear-pipeline performance analysis, in Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2006. Lecture Notes in Computer Science, ed. by J. Vounckx, N. Azemard, P. Maurine, vol. 4148, (Springer, Berlin/Heidelberg, 2006)

    Google Scholar 

  14. H. Zakaria, E. Yahya, L. Fesquet, Self adaption in SoCs, in Autonomic Networking-on-Chip: Bio-inspired Specification, Development, and Verification, ed. by P. Cong-Vinh, (CRC Press, Boca Raton, 2012)

    Google Scholar 

  15. E. Yahya, L. Fesquet, Asynchronous design: A promising paradigm for electronic circuits and systems, in 2009 16th IEEE International Conference on Electronics, Circuits and Systems – (ICECS 2009), (2009)

    Google Scholar 

  16. C.H. Van Berkel, M.B. Josephs, S.M. Nowick, Applications of asynchronous circuits. Proc. IEEE 87(2), 223–233 (1999). https://doi.org/10.1109/5.740016

    Article  Google Scholar 

  17. M. Davies, A. Lines, J. Dama, A. Gravel, R. Southworth, G. Dimou, P. Beerel, A 72-port 10G Ethernet switch/router using quasi-delay-insensitive asynchronous design, in 2014 20th IEEE International Symposium on Asynchronous Circuits and Systems, 12 May 2014, (IEEE), pp. 103–104

    Google Scholar 

  18. X. Fan, O. Schrape, M. Marinkovic, P. Dähnert, M. Krstic, E. Grass, GALS design for spectral peak attenuation of switching current, in 2013 IEEE 19th International Symposium on Asynchronous Circuits and Systems, 19 May 2013, (IEEE), pp. 83–90

    Google Scholar 

  19. Sheikh BR, Manohar R. An operand-optimized asynchronous IEEE 754 double-precision floating-point adder. In 2010 IEEE Symposium on Asynchronous Circuits and Systems, 3 May 2010 (pp. 151-162). IEEE

    Google Scholar 

  20. B. Hollosi, M. Barlow, G. Fu, C. Lee, J. Di, S.C. Smith, H.A. Mantooth, M. Schupbach, Delay-insensitive asynchronous ALU for cryogenic temperature environments, in 2008 51st Midwest Symposium on Circuits and Systems, 10 August 2008, (IEEE), pp. 322–325

    Google Scholar 

  21. A. Bailey, A. Al Zahrani, G. Fu, J. Di, S. Smith, Multi-threshold asynchronous circuit design for ultra-low power. J. Low Power Electron. 4(3), 337–348 (2008)

    Article  Google Scholar 

  22. R. Zhou, K.S. Chong, B.H. Gwee, J.S. Chang, A low overhead quasi-delay-insensitive (QDI) asynchronous data path synthesis based on microcell-interleaving genetic algorithm (MIGA). IEEE Trans. Comput. Aided Des. Integr. Circ. Syst. 33(7), 989–1002 (2014)

    Article  Google Scholar 

  23. W.G. Ho, K.S. Chong, B.H. Gwee, J.S. Chang, M.F. Yee, A power-efficient integrated input/output completion detection circuit for asynchronous-logic quasi-delay-insensitive pre-charged half-buffer, in 2011 International Symposium on Integrated Circuits, 12 December 2011, (IEEE), pp. 376–379

    Google Scholar 

  24. E. Yahya, L. Fesquet, Y. Ismail, M. Renaudin, Statistical static timing analysis of conditional asynchronous circuits using model-based simulation, in 2013 IEEE 19th International Symposium on Asynchronous Circuits and Systems, 19 May 2013, (IEEE), pp. 67–74

    Google Scholar 

  25. A. Yakovlev, P. Vivet, M. Renaudin, Advances in asynchronous logic: From principles to GALS & NoC, recent industry applications, and commercial CAD tools, in 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE), 18 March 2013, (IEEE), pp. 1715–1724

    Google Scholar 

  26. M. Renaudin, A. Fonkoua, Tiempo asynchronous circuits system verilog modeling language, in 2012 IEEE 18th International Symposium on Asynchronous Circuits and Systems, 7 May 2012, (IEEE), pp. 105–112

    Google Scholar 

  27. N.E.C. Akkaya, B. Erbagci, R. Carley, K. Mai, A DPA-resistant self-timed three-phase dual-rail pre-charge logic family. IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 2015, pp. 112–117

    Google Scholar 

  28. S. Guilley, L. Sauvage, F. Flament, V.-N. Vong, P. Hoogvorst, R. Pacalet, Evaluation of power constant dual-rail logics countermeasures against DPA with design time security metrics. IEEE Trans. Comput. 59(9), 1250–1263 (2010)

    Article  MathSciNet  Google Scholar 

  29. N.-H. Zhu, Y.-J. Zhou, H.-M. Liu, Employing symmetric dual-rail logic to thwart LPA attack. IEEE Embed. Syst. Lett. 5(4), 61–64 (2013)

    Article  Google Scholar 

  30. Y. Monnet, M. Renaudin, R. Leveugle, Designing resistant circuits against malicious faults injection using asynchronous logic. IEEE Trans. Comput. 55(9), 1104–1115 (2006)

    Article  Google Scholar 

  31. Q. Ou, F. Luo, S. Li, L. Chen, Circuit level defences against fault attacks in pipelined NCL circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(9), 1903–1913 (2015)

    Article  Google Scholar 

  32. J.J. Fournier, S. Moore, H. Li, R. Mullins, G. Taylor, Security evaluation of asynchronous circuits, in International Workshop on Cryptographic Hardware and Embedded Systems, 8 September 2003, (Heidelberg, Springer/Berlin), pp. 137–151

    Google Scholar 

  33. K.J. Kulikowski, M. Su, A. Smirnov, A. Taubin, M.G. Karpovsky, D. MacDonald, Delay insensitive encoding and power analysis: a balancing act [cryptographic hardware protection], in 11th IEEE International Symposium on Asynchronous Circuits and Systems, 14 March 2005, (IEEE), pp. 116–125

    Google Scholar 

  34. G.F. Bouesse, M. Renaudin, S. Dumont, F. Germain, DPA on quasi delay insensitive asynchronous circuits: formalization and improvement. Des. Autom. Test Eur. 1, 424–429 (2005)

    Article  Google Scholar 

  35. D. Sokolov, J. Murphy, A. Bystrov, A. Yakovlev, Improving the security of dual-rail circuits, in International Workshop on Cryptographic Hardware and Embedded Systems, 11 August 2004, (Heidelberg, Springer/Berlin), pp. 282–297

    Google Scholar 

  36. N. Liu, K.S. Chong, W.G. Ho, B.H. Gwee, J.S. Chang, Low normalized energy derivation asynchronous circuit synthesis flow through fork-join slack matching for cryptographic applications, in 2016 Design, Automation & Test in Europe Conference & Exhibition, 14 March 2016, (IEEE), pp. 850–853

    Google Scholar 

  37. J. Wu, Y. Shi, M. Choi, Measurement and evaluation of power analysis attacks on asynchronous S-box. IEEE Trans. Instrum. Measur. 61(10), 2765–2775 (2012)

    Article  Google Scholar 

  38. P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in Annual International Cryptology Conference, 15 August 1999, (Springer, Berlin/Heidelberg), pp. 388–397

    Google Scholar 

  39. D. Das, S. Maity, S.B. Nasir, S. Ghosh, A. Raychowdhury, S. Sen, High efficiency power side-channel attack immunity using noise injection in attenuated signature domain, in 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), 1 May 2017, (IEEE), pp. 62–67

    Google Scholar 

  40. D. Das, S. Maity, S.B. Nasir, S. Ghosh, A. Raychowdhury, S. Sen, ASNI: Attenuated signature noise injection for low-overhead power side-channel attack immunity. IEEE Trans. Circ. Syst. I: Regul. Pap. 65(10), 3300–3311 (2018)

    Google Scholar 

  41. A. Singh, M. Kar, S. Mathew, A. Rajan, V. De, S. Mukhopadhyay, 25.3 A 128b AES engine with higher resistance to power and electromagnetic side-channel attacks enabled by a security-aware integrated all-digital low-dropout regulator, in 2019 IEEE International Solid-State Circuits Conference-(ISSCC), 17 February 2019, (IEEE), pp. 404–406

    Google Scholar 

  42. M. Kar, A. Singh, S.K. Mathew, A. Rajan, V. De, S. Mukhopadhyay, Reducing power side-channel information leakage of AES engines using fully integrated inductive voltage regulator. IEEE J. Solid-State Circ. 53(8), 2399–2414 (2018)

    Article  Google Scholar 

  43. K. Tiri, I. Verbauwhede, A logic level design methodology for a secure DPA resistant ASIC or FPGA implementation, in Proceedings Design, Automation and Test in Europe Conference and Exhibition, 16 February 2004, vol. 1, (IEEE), pp. 246–251

    Google Scholar 

  44. S. Guilley, F. Flament, R. Pacalet, P. Hoogvorst, Y. Mathieu, Security Evaluation of a Secured Quasi-Delay Insensitive Library. DCIS, full text in HAL. http://hal.archives-ouvertes.fr/hal-00283405/en. 2008

  45. F. Bouesse, M. Renaudin, G. Sicard, Improving DPA resistance of quasi delay insensitive circuits using randomly time-shifted acknowledgment signals, in Vlsi-Soc: From Systems to Silicon, 2007, (Springer, Boston), pp. 11–24

    Google Scholar 

  46. M.C. Hsueh, T.K. Tsai, R.K. Iyer, Fault injection techniques and tools. Computer 30(4), 75–82 (1997)

    Article  Google Scholar 

  47. W. Jang, A.J. Martin, Seu-tolerant qdi circuits [quasi delay-insensitive asynchronous circuits], in 11th IEEE International Symposium on Asynchronous Circuits and Systems, 14 March 2005, (IEEE), pp. 156–165

    Google Scholar 

  48. E. Yahya, H. Zakaria, Y. Ismail, Deadlock detection in conditional asynchronous circuits under mismatched branch selection, in 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 6 December 2015, (IEEE), pp. 596–600

    Google Scholar 

  49. Y. Monnet, M. Renaudin, R. Leveugle, Designing resistant circuits against malicious faults injection using asynchronous logic. IEEE Trans. Comput. 55(9), 1104–1115 (2006)

    Article  Google Scholar 

  50. R.P. Bastos, G. Sicard, F. Kastensmidt, M. Renaudin, R. Reis, Asynchronous circuits as alternative for mitigation of long-duration transient faults in deep-submicron technologies. Microelectron. Reliab. 50(9-11), 1241–1246 (2010)

    Article  Google Scholar 

  51. E. Yahya, O. Elissati, H. Zakaria, L. Fesquet, M. Renaudin, Programmable/stoppable oscillator based on self-timed rings, in 2009 15th IEEE Symposium on Asynchronous Circuits and Systems, 17 May 2009, (IEEE), pp. 3–12

    Google Scholar 

  52. O. Elissati, S. Rieubon, E. Yahya, L. Fesquet, Self-timed rings: a promising solution for generating high-speed high-resolution low-phase noise clocks, in IFIP/IEEE International Conference on Very Large Scale Integration-System on a Chip, 27 September 2010, (Springer, Berlin/Heidelberg), pp. 22–42

    Google Scholar 

  53. A. Cherkaoui, V. Fischer, A. Aubert, L. Fesquet, A self-timed ring based true random number generator, in 2013 IEEE 19th International Symposium on Asynchronous Circuits and Systems, 19 May 2013, (IEEE), pp. 99–106

    Google Scholar 

  54. Y. Zhang, J. Jiang, Q. Wang, N. Guan, A self-timed ring based true random number generator on FPGA, in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), October 2018, (IEEE), pp. 1–3

    Google Scholar 

  55. K. Inaba, T. Yoneda, T. Kanamoto, A. Kurokawa, M. Imai, Hardware Trojan insertion and detection in asynchronous circuits, in 2019 25th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC), 12 May 2019, (IEEE), pp. 134–143

    Google Scholar 

  56. M. Singh, S.M. Nowick, MOUSETRAP: high-speed transition-signaling asynchronous pipelines. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 15(6), 684–698 (2007)

    Article  Google Scholar 

  57. S. Chowdhury, R. Acharya, W. Boullion, A. Felder, M. Howard, J. Di, D. Forte, A weak asynchronous RESet (ARES) PUF using start-up characteristics of null conventional logic gates, in IEEE International Test Conference (ITC), (IEEE, 2020)

    Google Scholar 

  58. E. Yahya, Y. Ismail, Chapter 9: Hardware security: side-channel attacks and hardware Trojans (Security, 2018), in Information Security: Foundations, Technologies and Applications’, pp. 191–214. https://doi.org/10.1049/PBSE001E_ch9. IET Digital Library. https://digital-library.theiet.org/content/books/10.1049/pbse001e_ch9

  59. Yu A, Brée DS. A clock-less implementation of the AES resists to power and timing attacks. In International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004, 5 April 2004 (2, pp. 525-532). IEEE

    Google Scholar 

  60. G.F. Bouesse, M. Renaudin, A. Witon, F. Germain, A clock-less low-voltage AES crypto-processor, in Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005, 12 September 2005, (IEEE), pp. 403–406

    Google Scholar 

  61. Z. Liu, Y. Zeng, X. Zou, Y. Han, Y. Chen, A high-security and low-power AES S-box full-custom design for wireless sensor network, in 2007 International Conference on Wireless Communications, Networking and Mobile Computing, 21 September 2007, (IEEE), pp. 2499–2502

    Google Scholar 

  62. D. Shang, F. Burns, A. Bystrov, A. Koelmans, D. Sokolov, A. Yakovlev, High-security asynchronous circuit implementation of AES. IEEE Proc. Comput. Digit. Tech. 153(2), 71–77 (2006)

    Article  Google Scholar 

  63. C.T. Otero, J. Tse, R. Manohar, AES hardware-software co-design in WSN, in 2015 21st IEEE International Symposium on Asynchronous Circuits and Systems, 4 May 2015, (IEEE), pp. 85–92

    Google Scholar 

  64. S. Agwa, E. Yahya, Y. Ismail, Power efficient AES core for IoT constrained devices implemented in 130nm CMOS, in 2017 IEEE International Symposium on Circuits and Systems (ISCAS), (Baltimore, 2017), pp. 1–4. https://doi.org/10.1109/ISCAS.2017.8050361

  65. N. Elmeligy, M. Amin, E. Yahya, Y. Ismail, 130 nm low power asynchronous AES core. IEEE International Symposium on Circuits & Systems (ISCAS). 2017

    Google Scholar 

  66. F. Charot, E. Yahya, C. Wagner, Efficient modular-pipelined AES implementation in counter mode on ALTERA FPGA, in International Conference on Field Programmable Logic and Applications, 1 September 2003, (Springer, Berlin/Heidelberg), pp. 282–291

    Google Scholar 

  67. NIST Lightweight Cryptography Project. https://csrc.nist.gov/Projects/Lightweight-Cryptography. Retrieved 31 August 2020

  68. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. https://competitions.cr.yp.to/caesar.html. Retrieved 31 August 2020

Download references

Acknowledgments

This work was partially supported by Semiconductor Research Corporation (SRC) and Battelle Memorial Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eslam Yahya Tawfik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tawfik, E.Y., Khalil, W. (2021). Asynchronous Circuits and Their Applications in Hardware Security. In: Tehranipoor, M. (eds) Emerging Topics in Hardware Security . Springer, Cham. https://doi.org/10.1007/978-3-030-64448-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64448-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64447-5

  • Online ISBN: 978-3-030-64448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics