Skip to main content

Neuromorphic Security

  • Chapter
  • First Online:
Emerging Topics in Hardware Security

Abstract

Heretofore, CMOS devices, circuits and architectures, experienced an accelerated technological evolution, with hardware security policies struggling to catch up to these advances. Hence, time and again, traditional computing platforms have fallen prey to security threats. With neuromorphic computing, the amalgamation of novel non-Von Neumann architectures, new post-CMOS nano-ionic devices, and an innovative software stack truly marks the beginning of a new era in computing system design. On the flip side, the simultaneous introduction of (1) unorthodox architectures, (2) circuits designed using novel devices, and (3) devices fabricated from unfamiliar materials, into a potentially flawed and untrustworthy system-on-chip (SoC) design space, can stir up a hornet’s nest of security threats.

With neuromorphic hardware expected to form the backbone of life-critical systems in healthcare, military and automotive industries, the potential ramifications of security vulnerabilities arising from following the same precedent of evolution as CMOS based architectures can prove catastrophic. Uncovering security vulnerabilities in the emerging neuromorphic computing paradigm, and understanding the impact of security on system characteristics will be instrumental in shaping our design practices. In this chapter, we examine security concerns in emerging neuromorphic systems with emphasis on vulnerabilities arising from devices, circuits, architectures and supporting sub-systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Agarwal, D. Rastogi, A. Singhal, The era of neurosynaptics: neuromorphic chips and architecture. Eur. Sci. J. 11(10) (2015). https://eujournal.org/index.php/esj/article/view/5716

  2. F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.J. Nam, B. Taba, M. Beakes, B. Brezzo, J.B. Kuang, R. Manohar, W.P. Risk, B. Jackson, D.S. Modha, Truenorth: design and tool flow of a 65 mW one million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 34(10), 1537–1557 (2015). https://doi.org/10.1109/TCAD.2015.2474396

    Article  Google Scholar 

  3. D.M. Ancajas, K. Chakraborty, S.Roy, Fort-NoCs: Mitigating the threat of a compromised NoC, in IEEE/ACM Design Automation Conference (DAC) (2014), pp. 1–6

    Google Scholar 

  4. A. Bagheri, O. Simeone, B. Rajendran, Adversarial training for probabilistic spiking neural networks, in 19th IEEE International Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2018, Kalamata, June 25–28, 2018 (2018), pp. 1–5

    Google Scholar 

  5. B.V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A.R. Chandrasekaran, J.M. Bussat, R. Alvarez-Icaza, J.V. Arthur, P.A. Merolla, K. Boahen, Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102(5), 699–716 (2014). https://doi.org/10.1109/JPROC.2014.2313565

    Article  Google Scholar 

  6. S. Bhunia, M.S. Hsiao, M. Banga, S. Narasimhan, Hardware trojan attacks: threat analysis and countermeasures. Proc. IEEE 102(8), 1229–1247 (2014)

    Article  Google Scholar 

  7. C. Bobin, O. Bichler, V. Lourenço, C. Thiam, M. Thévenin, Real-time radionuclide identification in gamma-emitter mixtures based on spiking neural network. Appl. Radiat. Isot. 109, 405–409 (2016). Proceedings of the 20th International Conference on Radionuclide Metrology and its Applications 8–11 June 2015, Vienna

    Google Scholar 

  8. N. Bostrom, Strategic implications of openness in AI development. Global Policy 8(2), 135–148 (2017)

    Article  Google Scholar 

  9. A.N. Burkitt, A review of the integrate-and-fire neuron model: I. homogeneous synaptic input. Biol. Cyb. 95(1), 1–19 (2006)

    Google Scholar 

  10. S.V.R. Chittamuru, I.G. Thakkar, S. Pasricha, S.S. Vatsavai, V. Bhat, Exploiting process variations to secure photonic NoC architectures from snooping attacks. CoRR abs/2007.10454 (2020). https://arxiv.org/abs/2007.10454

  11. M.H. Choi, S. Choi, J. Sim, L.S. Kim, Senin: An energy-efficient sparse neuromorphic system with on-chip learning, in 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED (IEEE, Piscataway, 2017), pp. 1–6

    Google Scholar 

  12. P.R. Cohen, E.A. Feigenbaum, The Handbook of Artificial Intelligence, vol. 3 (Butterworth-Heinemann, Oxford, 2014)

    MATH  Google Scholar 

  13. B. Dang, Q. Wu, F. Song, J. Sun, M. Yang, X. Ma, H. Wang, Y. Hao, A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. Nanoscale 10(43), 20089–20095 (2018)

    Article  Google Scholar 

  14. M. Davies, N. Srinivasa, T.H. Lin, G. Chinya, Y. Cao, S.H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, et al., Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018)

    Article  Google Scholar 

  15. H. Fang, A. Shrestha, D. Ma, Q. Qiu, Scalable NoC-based neuromorphic hardware learning and inference, in 2018 International Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil, July 8–13, 2018 (2018), pp. 1–8

    Google Scholar 

  16. S. Ghosh, Spintronics and security: prospects, vulnerabilities, attack models, and preventions. Proc. IEEE 104(10), 1864–1893 (2016)

    Article  Google Scholar 

  17. G. He, C. Dong, Y. Liu, X. Fan, IPlock: An effective hybrid encryption for neuromorphic systems IP core protection, in 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1 (2020), pp. 612–616

    Google Scholar 

  18. M. Hengstler, E. Enkel, S. Duelli, Applied artificial intelligence and trust—the case of autonomous vehicles and medical assistance devices. Technol. Forecast. Soc. Change 105, 105–120 (2016)

    Article  Google Scholar 

  19. M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, R.W. Linderman, Memristor crossbar-based neuromorphic computing system: a case study. IEEE Trans. Neur. Netw. Learn. Syst. 25(10), 1864–1878 (2014)

    Article  Google Scholar 

  20. W. Hu, J. Jiang, D. Xie, S. Wang, K. Bi, H. Duan, J. Yang, J. He, Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications. Nanoscale 10(31), 14893–14901 (2018)

    Article  Google Scholar 

  21. Y. Huai, Spin-transfer torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18(6), 33–40 (2008)

    Google Scholar 

  22. L. Huang, A.D. Joseph, B. Nelson, B.I. Rubinstein, J.D. Tygar, Adversarial machine learning, in Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence (ACM, New York, 2011), pp. 43–58. https://doi.org/10.1145/2046684.2046692

    Google Scholar 

  23. C.D. James, J.B. Aimone, N.E. Miner, C.M. Vineyard, F.H. Rothganger, K.D. Carlson, S.A. Mulder, T.J. Draelos, A. Faust, M.J. Marinella, et al., A historical survey of algorithms and hardware architectures for neural-inspired and neuromorphic computing applications. Biol. Inspir. Cogn. Arc. 19, 49–64 (2017)

    Google Scholar 

  24. J.W. Jang, J. Park, S. Ghosh, S. Bhunia, Self-correcting STTRAM under magnetic field attacks, in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, Piscataway, 2015), pp. 1–6

    Google Scholar 

  25. N.K. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neur. Netw. 52, 62–76 (2014)

    Article  Google Scholar 

  26. D. Kim, J. Kung, S. Chai, S. Yalamanchili, S. Mukhopadhyay, NeuroCube: a programmable digital neuromorphic architecture with high-density 3d memory, in 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA) (IEEE, Piscataway, 2016), pp. 380–392

    Google Scholar 

  27. P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom, Spectre attacks: exploiting speculative execution. Commun. ACM 63(7), 93–101 (2020)

    Article  Google Scholar 

  28. M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, M. Hamburg, Meltdown: Reading kernel memory from user space, in 27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, August 15–17, 2018 (2018), pp. 973–990

    Google Scholar 

  29. B. Liu, C. Wu, H. Li, Y. Chen, Q. Wu, M. Barnell, Q. Qiu, Cloning your mind: Security challenges in cognitive system designs and their solutions, in Proceedings of the 52Nd Annual Design Automation Conference (ACM, New York, 2015), pp. 95:1–95:5 https://doi.org/10.1145/2744769.2747915

  30. X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang, M. Barnell, Q. Wu, et al., Reno: A high-efficient reconfigurable neuromorphic computing accelerator design, in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC) (IEEE, Piscataway, 2015), pp. 1–6

    Google Scholar 

  31. B. Liu, C. Yang, H. Li, Y. Chen, Q. Wu, M. Barnell, Security of neuromorphic systems: Challenges and solutions, in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2016), pp. 1326–1329

    Google Scholar 

  32. C. Liu, Q. Dong, F. Yu, X. Chen, Rerise: An adversarial example restoration system for neuromorphic computing security, in 2018 IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2018, Hong Kong, July 8–11, 2018 (2018), pp. 470–475

    Google Scholar 

  33. C. Luo, Z. Ying, X. Zhu, L. Chen, A mixed-signal spiking neuromorphic architecture for scalable neural network, in 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), vol. 1 (IEEE, Piscataway, 2017), pp. 179–182

    Google Scholar 

  34. Y. Luo, L. Wan, J. Liu, J. Harkin, L. McDaid, Y. Cao, X. Ding, Low cost interconnected architecture for the hardware spiking neural networks. Front. Neurosci. 12, 857 (2018)

    Article  Google Scholar 

  35. Z.D. Luo, M.M. Yang, M. Alexe, Dissolvable memristors for physically transient neuromorphic computing applications. ACS Appl. Electr. Mater. 2(2), 310–315 (2019)

    Article  Google Scholar 

  36. P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, D.S. Modha, A digital neurosynaptic core using embedded crossbar memory with 45pj per spike in 45nm, in 2011 IEEE Custom Integrated Circuits Conference (CICC) (IEEE, Piscataway, 2011), pp. 1–4

    Google Scholar 

  37. Ş. Mihalaş, E. Niebur, A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neur. Comput. 21(3), 704–718 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. M.B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt, G. Indiveri, Y. Sandamirskaya, Obstacle avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic processing system. Front. Neurorob. 11, 28 (2017). https://doi.org/10.3389/fnbot.2017.00028. https://doi.org/10.5167/uzh-149387

  39. C.P. Newswire, Usdollar 1.6 Bn global neuromorphic chip market to witness strong growth in North America (2017). https://www.prnewswire.com/news-releases/us-16-bn-global-neuromorphic-chip-market-to-witness-strong-growth-in-north-america-610928905.html

  40. E. Orhan, The leaky integrate-and-fire neuron model. no 3, 1–6 (2012). [Online]. Available: http://www.cns.nyu.edu/~eorhan/notes/lif-neuron.pdf

  41. E. Painkras, L.A. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D.R. Lester, A.D. Brown, S.B. Furber, Spinnaker: A 1-w 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circ. 48(8), 1943–1953 (2013)

    Article  Google Scholar 

  42. N. Papernot, P.D. McDaniel, I.J. Goodfellow, Transferability in machine learning: from phenomena to black-box attacks using adversarial samples. CoRR abs/1605.07277 (2016). http://arxiv.org/abs/1605.07277

  43. Q. Qiu, Z. Li, K. Ahmed, W. Liu, S.F. Habib, H.H. Li, M. Hu, A neuromorphic architecture for context aware text image recognition. J. Signal Proc. Syst. 84(3), 355–369 (2016)

    Article  Google Scholar 

  44. C. Rajamanikkam, R. JS, S. Roy, Chakraborty, K.: Understanding security threats in emerging neuromorphic computing architecture. https://engineering.usu.edu/ece/faculty-sites/bridge-lab/

  45. S.G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, A. Raghunathan, Spindle: Spintronic deep learning engine for large-scale neuromorphic computing, in Proceedings of the 2014 International Symposium on Low Power Electronics and Design (ACM, New York, 2014), pp. 15–20

    Book  Google Scholar 

  46. N. Rathi, S. Ghosh, A. Iyengar, H. Naeimi, Data privacy in non-volatile cache: Challenges, attack models and solutions, in 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC) (IEEE, Piscataway, 2016), pp. 348–353

    Google Scholar 

  47. G. Rovere, Q. Ning, C. Bartolozzi, G. Indiveri, Ultra low leakage synaptic scaling circuits for implementing homeostatic plasticity in neuromorphic architectures, in IEEE International Symposium on Circuits and Systems (ISCAS) (2014), pp. 2073–2076

    Google Scholar 

  48. V. Roychowdhury, D. Janes, S. Bandyopadhyay, X. Wang, Collective computational activity in self-assembled arrays of quantum dots: a novel neuromorphic architecture for nanoelectronics. IEEE Trans. Electr. Dev. 43(10), 1688–1699 (1996)

    Article  Google Scholar 

  49. I.K. Schuller, R. Stevens, R. Pino, M. Pechan, Neuromorphic computing–from materials research to systems architecture roundtable. Technical Reprt, USDOE Office of Science (SC)(United States) (2015)

    Google Scholar 

  50. C.D. Schuman, T.E. Potok, R.M. Patton, J.D. Birdwell, M.E. Dean, G.S. Rose, J.S. Plank, A survey of neuromorphic computing and neural networks in hardware. CoRR abs/1705.06963 (2017). http://arxiv.org/abs/1705.06963

  51. R.J. Shridevi, D.M. Ancajas, K. Chakraborty, S. Roy, Runtime detection of a bandwidth denial attack from a rogue network-on-chip, in ACM/IEEE International Symposium on Networks-on-Chip (NOCS) (2015), pp. 8:1–8:8

    Google Scholar 

  52. D. Soudry, D. Di Castro, A. Gal, A. Kolodny, S. Kvatinsky, Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neur. Netw. Learn. Syst. 26(10), 2408–2421 (2015)

    Article  MathSciNet  Google Scholar 

  53. V. Sze, Y.H. Chen, J. Einer, A. Suleiman, Z. Zhang, Hardware for machine learning: challenges and opportunities, in Custom Integrated Circuits Conference (CICC) (IEEE, Piscataway, 2017), pp. 1–8

    Google Scholar 

  54. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S.E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, June 7–12, 2015 (2015), pp. 1–9

    Google Scholar 

  55. M. Tehranipoor, H. Salmani, X. Zhang, Hardware Trojan detection: Untrusted third-party IP cores, in Integrated Circuit Authentication (Springer, Berlin, 2014), pp. 19–30

    Google Scholar 

  56. M.C. Van Rossum, G.Q. Bi, G.G. Turrigiano, Stable Hebbian learning from spike timing-dependent plasticity. J. Neurosci. 20(23), 8812–8821 (2000)

    Article  Google Scholar 

  57. S. Venkataramani, A. Ranjan, K. Roy, A. Raghunathan, AxNN: Energy-efficient neuromorphic systems using approximate computing, in Proceedings of the 2014 International Symposium on Low Power Electronics and Design (ACM, New York, 2014), pp. 27–32

    Book  Google Scholar 

  58. K.Wang, H.Zheng, A. Louri, TSA-NoC: learning-based threat detection and mitigation for secure network-on-chip architecture. IEEE Micro 40, 1–1 (2020)

    Article  Google Scholar 

  59. S. Wozniak, A. Pantazi, S. Sidler, N. Papandreou, Y. Leblebici, E. Eleftheriou, Neuromorphic architecture with 1M memristive synapses for detection of weakly correlated inputs. IEEE Trans. Circ. Syst. II: Express Briefs 64, 1342–1346 (2017)

    Google Scholar 

  60. L. Xia, B. Li, T. Tang, P. Gu, P.Y. Chen, S. Yu, Y. Cao, Y. Wang, Xie, Y., H. Yang, MNSIM: Simulation platform for memristor-based neuromorphic computing system. IEEE Trans. Comput. Aided Design Integr. Circ. Syst. 37, 1009–1022 (2017)

    Google Scholar 

  61. M.A. Zidan, H.A.H. Fahmy, M.M. Hussain, K.N. Salama, Memristor-based memory: The sneak paths problem and solutions. Microelectr. J. 44(2), 176–183 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Foundation grants (CNS-1117425, CAREER-1253024, CCF-1318826, CNS-1421022, CNS-1421068). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koushik Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

J. S., R., Chakraborty, K., Roy, S. (2021). Neuromorphic Security. In: Tehranipoor, M. (eds) Emerging Topics in Hardware Security . Springer, Cham. https://doi.org/10.1007/978-3-030-64448-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64448-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64447-5

  • Online ISBN: 978-3-030-64448-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics