Skip to main content

Clinical Assessment of Corneal Biomechanics

  • Chapter
  • First Online:
Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye
  • 550 Accesses

Abstract

Only two devices for assessing corneal biomechanics are commercially available, the Ocular Response Analyzer (ORA) and the Corvis ST. Both utilize an air puff as the nondestructive load and both assess biomechanical deformation response of the cornea. However, they differ in strategies for loading with distinct air pressure profiles, as well as for assessing corneal response. The ORA uses an indirect assessment and the Corvis ST uses direct assessment via high-speed imaging. These differences have strong implications on how the data may be interpreted since the corneal biomechanical response depends on the applied load. Details of the differences are discussed in detail, and the devices are directly compared. Each device provides an important and unique biomechanical assessment of the cornea and the data are complimentary rather than competitive in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31:156–62.

    Article  Google Scholar 

  2. Ambrósio R Jr, Ramos I, Luz A, Faria-Correia F, Steinmueller A, Krug M, Belin MW, Roberts C. Dynamic ultra-high-speed Scheimpflug imaging for assessing corneal biomechanical properties. Rev Bras Oftalmol. 2013;72(2):99–102.

    Article  Google Scholar 

  3. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31:435–44.

    Article  CAS  Google Scholar 

  4. Nash IS, Greene PR, Foster CS. Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res. 1982;35:413–24.

    Article  CAS  Google Scholar 

  5. Jue B, Maurice DM. The mechanical properties of the rabbit and human cornea. J Biomech. 1986;19:847–53.

    Article  CAS  Google Scholar 

  6. Hoeltzel DA, Altman P, Buzard K, Choe K. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 2002;114:202–15.

    Article  Google Scholar 

  7. Palko JR, Liu J. Definitions and concepts. In: Roberts CJ, Liu J, editors. Corneal biomechanics: from theory to practice. Amsterdam: Kugler Publications; 2016. p. 1–24.

    Google Scholar 

  8. Luce D, Taylor D. Ocular response analyzer. In: Roberts CJ, Liu J, editors. Corneal biomechanics: from theory to practice. Amsterdam: Kugler Publications; 2016. p. 67–86.

    Google Scholar 

  9. Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40:862–9.

    Article  Google Scholar 

  10. Glass DH. Characterization of the biomechanical properties of the in vivo human cornea. PhD Dissertation, The Ohio State University; 2008.

    Google Scholar 

  11. Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic and non-contact tonometry. Am J Ophthalmol. 2007;143:39–47.

    Article  Google Scholar 

  12. Hallahan KM, Sinha Roy A, Ambrósio R Jr, Salomao M, Dupps WJ Jr. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121:459–68.

    Article  Google Scholar 

  13. Glass DH, Roberts CJ, Litsky AS, Weber PA. A viscoelastic biomechanical model of the cornea describing the effect of viscosity and elasticity on hysteresis. Invest Ophthalmol Vis Sci. 2008;49(9):3919–26.

    Article  Google Scholar 

  14. Hallahan K, Duups WJ Jr, Roberts CJ. Deformation response to an air puff: clinical methods. In: Roberts CJ, Dupps WJ, Downs JC, editors. Biomechanics of the eye. Amsterdam: Kugler Publications; 2018. p. 199–216.

    Google Scholar 

  15. Kérautret J, Colin J, Touboul D, Roberts C. Biomechanical characteristics of the ectatic cornea. J Cataract Refract Surg. 2008;34(3):510–3.

    Article  Google Scholar 

  16. Vinciguerra P, Albè E, Mahmoud AM, Trazza S, Hafezi F, Roberts CJ. Intra- and postoperative variation in ocular response analyzer parameters in keratoconic eyes after corneal cross-linking. J Refract Surg. 2010;26(9):669–76.

    Article  Google Scholar 

  17. Spoerl E, Terai N, Scholz F, Raiskup F, Pillunat LE. Detection of biomechanical changes after corneal cross-linking using ocular response analyzer software. J Refract Surg. 2011;27:452–7.

    Article  Google Scholar 

  18. Hallahan KM, Rocha K, Roy AS, Randleman JB, Stulting RD, Dupps WJ Jr. Effects of corneal cross-linking on ocular response analyzer waveform-derived variables in keratoconus and postrefractive surgery ectasia. Eye Contact Lens. 2014;40:339–44.

    Article  Google Scholar 

  19. Roberts CJ, Mahmoud AM, Lembach RG, Mauger TF. Corneal deformation characteristics and IOP before and after collagen crosslinking. Invest Ophth Vis Sci. 2013;54:1176.

    Article  Google Scholar 

  20. Mahmoud AM, Roberts CJ, Lembach RG, Twa MD, Herderick EE, McMahon TT, The CLEK study group. CLMI: the cone location and magnitude index. Cornea. 2008;27(4):480–7.

    Article  Google Scholar 

  21. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141:868–75.

    Article  Google Scholar 

  22. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang T-M, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120:1533–40.

    Article  Google Scholar 

  23. Roberts CJ, Mahmoud AM, Bons JP, Hossain A, Elsheikh A, Vinciguerra R, Vinciguerra P, Ambrósio R Jr. Introduction of two novel stiffness parameters and interpretation of air puff induced biomechanical deformation parameters with a dynamic Scheimpflug analyzer. J Refract Surg. 2017;33(4):266–73.

    Article  Google Scholar 

  24. Vinciguerra R, Elsheikh A, Roberts CJ, Ambrósio R Jr, Kang DS, Lopes BT, Morenghi E, Azzolini C, Vinciguerra P. The influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg. 2016;32:550–61.

    Article  Google Scholar 

  25. Metzler K, Mahmoud AM, Liu J, Roberts CJ. Deformation response of paired donor corneas to an air puff: intact whole globe vs mounted corneoscleral rim. J Cataract Refr Surg. 2014;40(6):888–96.

    Article  Google Scholar 

  26. Scarcelli G, Besner S, Pineda R, Yun SH. Biomechanical characterization of keratoconus corneas ex vivo with Brillouin microscopy. Invest Ophthalmol Vis Sci. 2014;55:4490–5.

    Article  Google Scholar 

  27. Vinciguerra R, Ambrósio R Jr, Roberts CJ, Azzolini C, Vinciguerra P. Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg. 2017;33(6):399–407.

    Article  Google Scholar 

  28. Vinciguerra R, Ambrósio R Jr, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Paolo Vinciguerra P. Dectection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32:803–10.

    Article  Google Scholar 

  29. Ambrósio R Jr, Lopes B, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, Vinciguerra R, Vinciguerra P. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33:434–43.

    Article  Google Scholar 

  30. Lee H, Roberts C, Kim T-I, Ambrosio R, Elsheikh A, Kang DSY. Changes in biomechanically-corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2017;43(12):1495–503.

    Article  Google Scholar 

  31. Santhiago MR. Percent tissue altered and corneal ectasia. Curr Opin Ophthalmol. 2016;27:311–5.

    Article  Google Scholar 

  32. Fernández J, Rodriguez-Vallejo M, Martinez J, Tauste A, Salvestrini P, Piñero DP. New parameters for evaluating corneal biomechanics and intraocular pressure after small-incision lenticule extraction by Scheimpflug-based dynamic tonometry. J Cataract Refract Surg. 2017;43:803–11.

    Article  Google Scholar 

  33. Vinciguerra R, Romano V, Arbabi E, Brunner M, Willoughby CE, Batterbury M, Kaye SB. In-vivo early corneal biomechanical changes after collagen cross-linking in patients with progressive keratoconus. J Refract Surg. 2017;33:840–6.

    Article  Google Scholar 

  34. Lee H, Roberts C, Ambrósio R, Elsheikh A, Kang DSY, Kim T-I. Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients. J Cataract Refract Surg. 2017;43:937–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia J. Roberts .

Editor information

Editors and Affiliations

Ethics declarations

Dr. Roberts is a consultant to Oculus Optikgeräte GmbH and Ziemer Ophthalmic Systems AG.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberts, C.J. (2021). Clinical Assessment of Corneal Biomechanics. In: Pallikaris, I., Tsilimbaris, M.K., Dastiridou, A.I. (eds) Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye. Springer, Cham. https://doi.org/10.1007/978-3-030-64422-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64422-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64421-5

  • Online ISBN: 978-3-030-64422-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics