Skip to main content

Ultrasound Guidance of Resuscitation in Shock

  • Chapter
  • First Online:
Manual of Austere and Prehospital Ultrasound
  • 385 Accesses

Abstract

The initial resuscitation in acute medical and traumatic emergencies is of the utmost importance to maintain or enhance end organ perfusion and improve patient outcomes. However, blind fluid administration to patients in shock is associated with its own set of risks. Point of care ultrasound has revolutionized the practice of acute care medicine and should be utilized in the pre-hospital setting to help diagnose the etiology of shock and guide decisions regarding appropriate interventions. This chapter will not only highlight key concepts and evidence for ultrasound-guided resuscitation, but will also offer a structured approach to cardiopulmonary and vascular ultrasonography to help determine a patient’s fluid tolerance and fluid responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma - Inj Infect Crit Care. 2006;60(6 SUPPL):3–11. https://doi.org/10.1097/01.ta.0000199961.02677.19.

    Article  Google Scholar 

  2. McGee S, Abernethy WB, Simel DL. Is this patient hypovolemic? J Am Med Assoc. 1999;281(11):1022–9. https://doi.org/10.1001/jama.281.11.1022.

    Article  CAS  Google Scholar 

  3. Wo CCJ, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E. Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med. 1993;21(2):218–23. https://doi.org/10.1097/00003246-199302000-00012.

    Article  CAS  PubMed  Google Scholar 

  4. Opreanu RC, Arrangoiz R, Stevens P, Morrison CA, Mosher BD, Kepros JP. Hematocrit, systolic blood pressure and heart rate are not accurate predictors for surgery to control hemorrhage in injured patients. Am Surg. 2010;76(3):296–301.

    Article  PubMed  Google Scholar 

  5. King DR, Ogilvie MP, Pereira BMT, et al. Heart rate variability as a triage tool in patients with trauma during prehospital helicopter transport. J Trauma - Inj Infect Crit Care. 2009;67(3):436–40. https://doi.org/10.1097/TA.0b013e3181ad67de.

    Article  Google Scholar 

  6. Moore CL, Rose GA, Tayal VS, Sullivan DM, Arrowood JAKJ. Determination of left ventricular function by emergency physician echocardiography of hypotensive patients. Acad Emerg Med. 2002;9(3):186–93.

    Article  PubMed  Google Scholar 

  7. Jones AE, Stiell IG, Nesbitt LP, et al. Nontraumatic out-of-hospital hypotension predicts inhospital mortality. Ann Emerg Med. 2004;43(1):106–13. https://doi.org/10.1016/j.annemergmed.2003.08.008.

    Article  PubMed  Google Scholar 

  8. Durairaj L, Schmidt GA. Fluid therapy in resuscitated sepsis: less is more. Chest. 2008;133(1):252–63. https://doi.org/10.1378/chest.07-1496.

    Article  PubMed  Google Scholar 

  9. Caltabeloti F. Early fluid loading in acute respiratory distress syndrome with septic shock deteriorates lung aeration without impairing arterial oxygenation: a lung ultrasound observational study. Crit Care. 2014;18(R91):1–11. https://doi.org/10.1186/cc13859.

    Article  Google Scholar 

  10. Kasotakis G, Sideris A, Yang Y, et al. Aggressive early crystalloid resuscitation adversely affects outcomes in adult blunt trauma patients: an analysis of the Glue Grant database. J Trauma Acute Care Surg. 2013;74(5):1215–22. https://doi.org/10.1097/TA.0b013e3182826e13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jones AE, Tayal VS, Sullivan DM, Kline JA. Randomized, controlled trial of immediate versus delayed goal-directed ultrasound to identify the cause of nontraumatic hypotension in emergency department patients. Crit Care Med. 2004;32(8):1703–8. https://doi.org/10.1097/01.CCM.0000133017.34137.82.

    Article  PubMed  Google Scholar 

  12. Rose JS, Bair AE, Mandavia D, Kinser DJ. The UHP ultrasound protocol: a novel ultrasound approach to the empiric evaluation of the undifferentiated hypotensive patient. Am J Emerg Med. 2001;19(4):299–302. https://doi.org/10.1053/ajem.2001.24481.

    Article  CAS  PubMed  Google Scholar 

  13. Ferrada P, Anand RJ, Whelan J, et al. Limited transthoracic echocardiogram: so easy any trauma attending can do it. J Trauma - Inj Infect Crit Care. 2011;71(5):1327–31. https://doi.org/10.1097/TA.0b013e3182318574.

    Article  Google Scholar 

  14. Ferrada P, Anand RJ, Whelan J, et al. Qualitative assessment of the inferior vena cava: useful tool for the evaluation of fluid status in critically ill patients. Am Surg. 2012;78(4):468–70. http://www.ingentaconnect.com.ezproxy.bu.edu/content/sesc/tas/2012/00000078/00000004/art00039. Accessed 27 Oct 2018.

    Article  PubMed  Google Scholar 

  15. Ferrada P, Evans D, Wolfe L, et al. Findings of a randomized controlled trial using limited transthoracic echocardiogram (LTTE) as a hemodynamic monitoring tool in the trauma bay. J Trauma Acute Care Surg. 2014;76:31–8. https://doi.org/10.1097/TA.0b013e3182a74ad9.

    Article  PubMed  Google Scholar 

  16. Ferrada P, Murthi S, Anand RJ, Bochicchio GV, Scalea T. Transthoracic focused rapid echocardiographic examination: real-time evaluation of fluid status in critically ill trauma patients. J Trauma - Inj Infect Crit Care. 2011;70(1):56–64. https://doi.org/10.1097/TA.0b013e318207e6ee.

    Article  Google Scholar 

  17. Gunst M, Ghaemmaghami V, Sperry J, et al. Accuracy of cardiac function and volume status estimates using the bedside echocardiographic assessment in trauma/critical care. J Trauma - Inj Infect Crit Care. 2008;65(3):509–16. https://doi.org/10.1097/TA.0b013e3181825bc5.

    Article  Google Scholar 

  18. Atkinson PRT, McAuley DJ, Kendall RJ, et al. Abdominal and Cardiac Evaluation with Sonography in Shock (ACES): an approach by emergency physicians for the use of ultrasound in patients with undifferentiated hypotension. Emerg Med J. 2009;26(2):87–91. https://doi.org/10.1136/emj.2007.056242.

    Article  CAS  PubMed  Google Scholar 

  19. O’Dochartaigh D, Douma M. Prehospital ultrasound of the abdomen and thorax changes trauma patient management: a systematic review. Injury. 2015;46(11):2093–102. https://doi.org/10.1016/j.injury.2015.07.007.

    Article  PubMed  Google Scholar 

  20. Taylor J, McLaughlin K, McRae A, Lang E, Anton A. Use of prehospital ultrasound in North America: a survey of emergency medical services medical directors. BMC Emerg Med. 2014;14(1):6. https://doi.org/10.1186/1471-227X-14-6.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blanco P, Aguiar FM, Blaivas M. Rapid ultrasound in shock (RUSH) velocity-time integral: a proposal to expand the RUSH protocol. J Ultrasound Med. 2015;34(9):1691–700. https://doi.org/10.7863/ultra.15.14.08059.

    Article  PubMed  Google Scholar 

  22. Perera P, Mailhot T. The RUSH exam: rapid ultrasound in SHock in the evaluation of th e critically lll. Shock. 2010;28(1):29–56. https://doi.org/10.1016/j.emc.2009.09.010.

    Article  Google Scholar 

  23. Lichtenstein D. Lung ultrasound in acute respiratory failure an introduction to the BLUE-protocol. Chest. 2008;134(1):117–25. https://doi.org/10.1378/chest.07-2800, Relevance of Lung Ultrasound in the Diagnosis of Acute Respiratory Failure*: The BLUE Protocol.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lichtenstein DA. BLUE-protocol and FALLS-protocol: two applications of lung ultrasound in the critically ill. Chest. 2015;147(6):1659–70. https://doi.org/10.1378/chest.14-1313.

    Article  PubMed  Google Scholar 

  25. Breitkreutz R, Walcher F, Seeger FH. Focused echocardiographic evaluation in resuscitation management: concept of an advanced life support-conformed algorithm. Crit Care Med. 2007;35(5 Suppl) https://doi.org/10.1097/01.CCM.0000260626.23848.FC.

  26. Hypotensive A, Bahner DP. Trinity. J Diagn Med Sonogr. 2002;18(4):193–8.

    Article  Google Scholar 

  27. Jensen MB, Sloth E, Larsen KM, Schmidt MB. Transthoracic echocardiography for cardiopulmonary monitoring in intensive care. Eur J Anaesthesiol. 2004;21(9):700–7. https://doi.org/10.1017/S0265021504009068.

    Article  CAS  PubMed  Google Scholar 

  28. Lanctôt JF, Valois M, Beaulieu Y. EGLS: Echo-guided life support. Crit Ultrasound J. 2011;3(3):123–9. https://doi.org/10.1007/s13089-011-0083-2.

    Article  Google Scholar 

  29. Weingart S. Original RUSH article. https://emcrit.org/rush-exam/original-rush-article/. Published 2008. Accessed 22 Oct 2018.

  30. Chin EJ, Chan CH, Mortazavi R, et al. A pilot study examining the viability of a prehospital assessment with ultrasound for emergencies (PAUSE) protocol. J Emerg Med. 2013;44(1):142–9. https://doi.org/10.1016/j.jemermed.2012.02.032.

    Article  PubMed  Google Scholar 

  31. Fitzgibbon JB, Lovallo E, Escajeda J, Radomski MA, Martin-Gill C. Feasibility of out-of-hospital cardiac arrest ultrasound by EMS physicians. Prehospital Emergency Care. https://www.tandfonline.com/doi/full/10.1080/10903127.2018.1518505. Published 17 Oct 2018. Accessed 14 Dec 2018.

  32. Kennedy Hall M, Coffey EC, Herbst M, et al. The “5Es” of emergency physician-performed focused cardiac ultrasound: a protocol for rapid identification of effusion, ejection, equality, exit, and entrance. Costantino T, ed. Acad Emerg Med. 2015;22(5):583–93. https://doi.org/10.1111/acem.12652.

    Article  CAS  PubMed  Google Scholar 

  33. Tayal VS, Kline JA. Emergency echocardiography to detect pericardial effusion in patients in PEA and near-PEA states. Resuscitation. 2003;59(3):315–8. https://doi.org/10.1016/S0300-9572(03)00245-4.

    Article  PubMed  Google Scholar 

  34. Spodick DH. Acute cardiac tamponade. N Engl J Med. 2003;349:684–90. https://doi.org/10.1056/NEJMra022643.

    Article  PubMed  Google Scholar 

  35. Imazio M, Mayosi BM, Brucato A, Adler Y. Pericardial effusion triage. Int J Cardiol. 2010;145(2):403–4. https://doi.org/10.1016/J.IJCARD.2010.04.031.

    Article  PubMed  Google Scholar 

  36. Armstrong WF, Schilt BF, Helper DJ, Dillon JC, Feigenbaum H. Diastolic collapse of the right ventricle with cardiac tamponade: an echocardiographic study. Circulation. 1982;65(7):1491–6. http://www.ncbi.nlm.nih.gov/pubmed/7074806. Accessed 28 Oct 2018.

    Article  CAS  PubMed  Google Scholar 

  37. Noble VE, Nelson B, Sutingco AN. Manual of emergency and critical care ultrasound; 2007. https://doi.org/10.1017/CBO9780511547249.

    Book  Google Scholar 

  38. Pérez-Casares A, Cesar S, Brunet-Garcia L, Sanchez-de-Toledo J. Echocardiographic evaluation of pericardial effusion and cardiac tamponade. Front Pediatr. 2017;5:79. https://doi.org/10.3389/fped.2017.00079.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Heegaard W, Hildebrandt D, Reardon R, Plummer D, Clinton J, Ho J. Prehospital ultrasound diagnosis of traumatic pericardial effusion. Acad Emerg Med. 2009;16(4):364. https://doi.org/10.1111/j.1553-2712.2009.00379.x.

    Article  PubMed  Google Scholar 

  40. Byhahn C, Bingold TM, Zwissler B, Maier M, Walcher F. Prehospital ultrasound detects pericardial tamponade in a pregnant victim of stabbing assault. Resuscitation. 2008;76(1):146–8. https://doi.org/10.1016/j.resuscitation.2007.07.020.

    Article  PubMed  Google Scholar 

  41. Amico AF, Lichtenberg GS, Reisner SA, Stone CK, Schwartz RG, Meltzer RS. Superiority of visual versus computerized echocardiographic estimation of radionuclide left ventricular ejection fraction. Am Heart J. 1989;118(6):1259–65. http://www.ncbi.nlm.nih.gov/pubmed/2686380. Accessed 28 Oct 2018.

    Article  CAS  PubMed  Google Scholar 

  42. Gudmundsson P, Rydberg E, Winter R, Willenheimer R. Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol. 2005;101(2):209–12. https://doi.org/10.1016/j.ijcard.2004.03.027.

    Article  PubMed  Google Scholar 

  43. Moore C. Determination of left ventricular function by emergency physician echocardiography of hypotensive patients. Acad Emerg Med. 2002;9(3):186–93.

    Article  PubMed  Google Scholar 

  44. Secko MA, Lazar JM, Salciccioli LA, Stone MB. Can junior emergency physicians use E-point septal separation to accurately estimate left ventricular function in acutely dyspneic patients? Acad Emerg Med. 2011;18(11):1223–6. https://doi.org/10.1111/j.1553-2712.2011.01196.x.

    Article  PubMed  Google Scholar 

  45. Jones AE, Craddock PA, Tayal VS, Kline JA. Diagnostic accuracy of left ventricular function for identifying sepsis among emergency department patients with nontraumatic symptomatic undifferentiated hypotension. Shock. 2006;24(6):513–7. https://doi.org/10.1097/01.shk.0000186931.02852.5f.

    Article  Google Scholar 

  46. Nazeyrollas P, Metz D, Jolly D, et al. Use of transthoracic Doppler echocardiography combined with clinical and electrocardiographic data to predict acute pulmonary embolism. Eur Heart J. 1996;17(5):779–86. https://doi.org/10.1093/oxfordjournals.eurheartj.a014946.

    Article  CAS  PubMed  Google Scholar 

  47. Torbicki A, Perrier A, Konstantinides S, et al. Guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2008;29(18):2276–315. https://doi.org/10.1093/eurheartj/ehn310.

    Article  CAS  PubMed  Google Scholar 

  48. Jardin F, Vieillard-Baron A. Ultrasonographic examination of the venae cavae. Appl Physiol Intensive Care Med 2 Physiol Rev Ed. 2012:51–4. https://doi.org/10.1007/978-3-642-28233-1_5.

  49. Randazzo MR, Snoey ER, Levitt MA, Binder K. Accuracy of emergency physician assessment of left ventricular ejection fraction and central venous pressure using echocardiography. Acad Emerg Med. 2003;10(9):973–7. https://doi.org/10.1197/S1069-6563(03)00317-8.

    Article  PubMed  Google Scholar 

  50. Tsutsui RS, Borowski A, Tang WHW, Thomas JD, Popović ZB. Precision of echocardiographic estimates of right atrial pressure in patients with acute decompensated heart failure. J Am Soc Echocardiogr. 2014;27(10):1072–8. https://doi.org/10.1016/j.echo.2014.06.002.

    Article  PubMed  Google Scholar 

  51. Kircher BJ, Himelman RB, Schiller NB. Noninvasive estimation of right atrial pressure from the inspiratory collapse of the inferior vena cava. Am J Cardiol. 1990;66(4):493–6. https://doi.org/10.1016/0002-9149(90)90711-9.

    Article  CAS  PubMed  Google Scholar 

  52. De Lorenzo RA, Morris MJ, Williams JB, et al. Does a simple bedside sonographic measurement of the inferior vena cava correlate to central venous pressure? J Emerg Med. 2012;42(4):429–36. https://doi.org/10.1016/j.jemermed.2011.05.082.

    Article  PubMed  Google Scholar 

  53. Dawson M, Mallon Mi. Introduction to bedside ultrasound: Volume 1. Emergency Ultrasound Solutions; 2013. https://itunes.apple.com/us/book/introduction-to-bedside-ultrasound-volume-1/id554196012?mt=11.

  54. Seif D, Mailhot T, Perera P, Mandavia D. Caval sonography in shock. J Ultrasound Med. 2012;31(12):1885–90. https://doi.org/10.7863/jum.2012.31.12.1885.

    Article  PubMed  Google Scholar 

  55. Wallace DJ, Allison M, Stone MB. Inferior vena cava percentage collapse during respiration is affected by the sampling location: an ultrasound study in healthy volunteers. Acad Emerg Med. 2010;17(1):96–9. https://doi.org/10.1111/j.1553-2712.2009.00627.x.

    Article  PubMed  Google Scholar 

  56. Weekes AJ, Tassone HM, Babcock A, et al. Comparison of serial qualitative and quantitative assessments of caval index and left ventricular systolic function during early fluid resuscitation of hypotensive emergency department patients. Acad Emerg Med. 2011;18(9):912–21. https://doi.org/10.1111/j.1553-2712.2011.01157.x.

    Article  PubMed  Google Scholar 

  57. Yildirimturk O, Tayyareci Y, Erdim R, et al. Assessment of right atrial pressure using echocardiography and correlation with catheterization. J Clin Ultrasound. 2011;39(6):337–43. https://doi.org/10.1002/jcu.20837.

    Article  PubMed  Google Scholar 

  58. Blehar DJ, Resop D, Chin B, Dayno M, Gaspari R. Inferior vena cava displacement during respirophasic ultrasound imaging. Crit Ultrasound J. 2012;4(1):18. https://doi.org/10.1186/2036-7902-4-18.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nagdev AD, Merchant RC, Tirado-Gonzalez A, Sisson CA, Murphy MC. Emergency department bedside ultrasonographic measurement of the caval index for noninvasive determination of low central venous pressure. Ann Emerg Med. 2010;55:290–5. https://doi.org/10.1016/j.annemergmed.2009.04.021.

    Article  PubMed  Google Scholar 

  60. Brennan JM, Blair JE, Goonewardena S, et al. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20(7):857–61. https://doi.org/10.1016/j.echo.2007.01.005.

    Article  PubMed  Google Scholar 

  61. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American society of echocardiography and the European association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–71. https://doi.org/10.1093/ehjci/jev014.

    Article  PubMed  Google Scholar 

  62. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7. https://doi.org/10.1007/s00134-004-2233-5.

    Article  PubMed  Google Scholar 

  63. Barbier C, Loubières Y, Schmit C, et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004;30(9):1740–6. https://doi.org/10.1007/s00134-004-2259-8.

    Article  PubMed  Google Scholar 

  64. Yanagawa Y, Sakamoto T, Okada Y. Hypovolemic shock evaluated by sonographic measurement of the inferior vena cava during resuscitation in trauma patients. J Trauma. Background: Inferior vena cava. 2007;63:1245–8. https://doi.org/10.1097/TA.0b013e318068d72b.

    Article  PubMed  Google Scholar 

  65. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness?*: a systematic review of the literature and the tale of seven mares. Chest. 2008;134(1):172–8. https://doi.org/10.1378/chest.07-2331.

    Article  PubMed  Google Scholar 

  66. Marik PE, Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit Care Med. 2013;41(7):1774–81. https://doi.org/10.1097/CCM.0b013e31828a25fd.

    Article  PubMed  Google Scholar 

  67. Corl K, Napoli AM, Gardiner F. Bedside sonographic measurement of the inferior vena cava caval index is a poor predictor of fluid responsiveness in emergency department patients. Emerg Med Australas. 2012;24(5):534–9. https://doi.org/10.1111/j.1742-6723.2012.01596.x.

    Article  PubMed  Google Scholar 

  68. Muller L, Bobbia X, Toumi M, et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care. 2012;16(5):R188. https://doi.org/10.1186/cc11672.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Pivetta E, Goffi A, Lupia E, et al. Lung ultrasound-implemented diagnosis of acute decompensated heart failure in the ED: a SIMEU multicenter study. Chest. 2015;148(1):202–10. https://doi.org/10.1378/chest.14-2608.

    Article  PubMed  Google Scholar 

  70. Anderson KL, Jenq KY, Fields JM, Panebianco NL, Dean AJ. Diagnosing heart failure among acutely dyspneic patients with cardiac, inferior vena cava, and lung ultrasonography. Am J Emerg Med. 2013;31(8):1208–14. https://doi.org/10.1016/j.ajem.2013.05.007.

    Article  PubMed  Google Scholar 

  71. Anderson KL, Fields JM, Panebianco NL, Jenq KY, Marin J, Dean AJ. Inter-rater reliability of quantifying pleural B-lines using multiple counting methods. J Ultrasound Med. 2013;32(1):115–20. https://doi.org/10.7863/jum.2013.32.1.115.

    Article  PubMed  Google Scholar 

  72. Volpicelli G, Lamorte A, Tullio M, et al. Point-of-care multiorgan ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensive Care Med. 2013;39(7):1290–8. https://doi.org/10.1007/s00134-013-2919-7.

    Article  CAS  PubMed  Google Scholar 

  73. Martindale JL, Wakai A, Collins SP, et al. Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis. Carpenter C, ed. Acad Emerg Med. 2016;23(3):223–42. https://doi.org/10.1111/acem.12878.

    Article  PubMed  Google Scholar 

  74. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Intensive Care Med. 2007;33:1125–32. https://doi.org/10.1097/MCC.0b013e3282fd6e1e.

    Article  PubMed  Google Scholar 

  75. Monnet X, Cipriani F, Camous L, et al. The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care. 2016;6(1):46. https://doi.org/10.1186/s13613-016-0149-1.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Atkinson PR, Milne J, Diegelmann L, et al. Does point-of-care ultrasonography improve clinical outcomes in emergency department patients with undifferentiated hypotension? An international randomized controlled trial from the SHoC-ED investigators. Ann Emerg Med. 2018;72(4):478–89. https://doi.org/10.1016/j.annemergmed.2018.04.002.

    Article  PubMed  Google Scholar 

  77. Huguet R, Fard D, D’Humieres T, et al. Three-dimensional inferior vena cava for assessing central venous pressure in patients with cardiogenic shock. J Am Soc Echocardiogr. 2018;31(9):1034–43. https://doi.org/10.1016/j.echo.2018.04.003.

    Article  PubMed  Google Scholar 

  78. Cholley BP. International expert statement on training standards for critical care ultrasonography. Intensive Care Med. 2011;37(7):1077–83. https://doi.org/10.1007/s00134-011-2246-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Karasek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karasek, K., Leo, M. (2021). Ultrasound Guidance of Resuscitation in Shock. In: Nicholson, B.D., Vitto, M.J., Dhindsa, H.S. (eds) Manual of Austere and Prehospital Ultrasound. Springer, Cham. https://doi.org/10.1007/978-3-030-64287-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64287-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64286-0

  • Online ISBN: 978-3-030-64287-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics