Skip to main content

Star-Freeness, First-Order Definability and Aperiodicity of Structured Context-Free Languages

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2020 (ICTAC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12545))

Included in the following conference series:

Abstract

A classic result in formal language theory is the equivalence among aperiodic finite automata, star-free regular expressions, and first-order logic on words. Extending these results to structured subclasses of context-free languages, such as tree languages, did not work as smoothly: there are star-free tree languages that are counting. We argue that investigating the same properties within the family of operator precedence languages (OPLs) by going back to string languages rather than tree languages may lead to equivalences that perfectly match those on regular languages. We define operator precedence expressions; we show that they define exactly the class of OPLs and that, when restricted to the star-free subclass, coincide with first-order definable OPLs and are aperiodic.

Since operator precedence languages strictly include other classes of structured languages such as visibly pushdown languages, the same results given in this paper hold as trivial corollary for that family too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a minor deviation from [12], where it was assumed that grammars have only one axiom.

  2. 2.

    See Fig. 3.

  3. 3.

    Note that the G produced by the construction is BD if so are \(G_1\) and \(G_2\), but it could be not necessarily BDR; however, if a BDR OPG has a counting derivation, any equivalent BD grammar has also a counting derivation.

  4. 4.

    \(\Xi := \{ (x,y) \mid A \rightarrow x B y \in P \} \,\cup \, \{ z \mid A \rightarrow z \in P \} \).

References

  1. Alur, R., Arenas, M., Barceló, P., Etessami, K., Immerman, N., Libkin, L.: First-order and temporal logics for nested words. In: Logical Methods in Computer Science, vol. 4, no. 4 (2008)

    Google Scholar 

  2. Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3), 1–43 (2009)

    Article  MathSciNet  Google Scholar 

  3. Alur, R., Bouajjani, A., Esparza, J.: Model checking procedural programs. Handbook of Model Checking, pp. 541–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_17

    Chapter  MATH  Google Scholar 

  4. Alur, R., Chaudhuri, S., Madhusudan, P.: Software model checking using languages of nested trees. ACM Trans. Program. Lang. Syst. 33(5), 15:1–15:45 (2011). https://doi.org/10.1145/2039346.2039347

    Article  Google Scholar 

  5. Autebert, J.-M., Berstel, J., Boasson, L.: Context-free languages and pushdown automata. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 111–174. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59136-5_3

    Chapter  Google Scholar 

  6. Bozzelli, L., Sánchez, C.: Visibly linear temporal logic. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 418–433. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_33

    Chapter  Google Scholar 

  7. von Braunmühl, B., Verbeek, R.: Input-driven languages are recognized in log n space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-12689-9_92

    Chapter  Google Scholar 

  8. Büchi, J.R.: Weak second-order arithmetic and finite automata. Math. Log. Q. 6(1–6), 66–92 (1960)

    Article  MathSciNet  Google Scholar 

  9. Chiari, M., Mandrioli, D., Pradella, M.: Temporal logic and model checking for operator precedence languages. In: Orlandini, A., Zimmermann, M. (eds.) Proceedings Ninth International Symposium on Games, Automata, Logics, and Formal Verification, GandALF 2018, Saarbrücken, Germany, 26–28th September 2018. EPTCS, vol. 277, pp. 161–175 (2018). https://doi.org/10.4204/EPTCS.277.12

  10. Crespi Reghizzi, S., Guida, G., Mandrioli, D.: Noncounting context-free languages. J. ACM 25, 571–580 (1978)

    Article  MathSciNet  Google Scholar 

  11. Crespi Reghizzi, S., Guida, G., Mandrioli, D.: Operator precedence grammars and the noncounting property. SICOMP: SIAM J. Comput. 10, 174–191 (1981)

    Article  MathSciNet  Google Scholar 

  12. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly pushdown property. J. Comput. Syst. Sci. 78(6), 1837–1867 (2012)

    Article  MathSciNet  Google Scholar 

  13. Crespi Reghizzi, S., Mandrioli, D., Martin, D.F.: Algebraic properties of operator precedence languages. Inf. Control 37(2), 115–133 (1978)

    Article  MathSciNet  Google Scholar 

  14. Crespi Reghizzi, S., Pradella, M.: Beyond operator-precedence grammars and languages. J. Comput. Syst. Sci. (2020). to appear

    Google Scholar 

  15. Crespi Reghizzi, S., Mandrioli, D.: A class of grammar generating non-counting languages. Inf. Process. Lett. 7(1), 24–26 (1978). https://doi.org/10.1016/0020-0190(78)90033-9

    Article  MathSciNet  Google Scholar 

  16. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History and Perspectives, Texts in Logic and Games, pp. 261–306. Amsterdam University Press (2008)

    Google Scholar 

  17. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98(1), 21–52 (1961)

    Article  MathSciNet  Google Scholar 

  18. Ésik, Z., Iván, S.: Aperiodicity in tree automata. In: Bozapalidis, S., Rahonis, G. (eds.) CAI 2007. LNCS, vol. 4728, pp. 189–207. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75414-5_12

    Chapter  Google Scholar 

  19. Floyd, R.W.: Syntactic analysis and operator precedence. J. ACM 10(3), 316–333 (1963)

    Article  Google Scholar 

  20. Harrison, M.A.: Introduction to Formal Language Theory. Addison Wesley, Boston (1978)

    MATH  Google Scholar 

  21. Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity. ITA 25, 125–145 (1991). https://doi.org/10.1051/ita/1991250201251

    Article  MathSciNet  MATH  Google Scholar 

  22. Langholm, T.: A descriptive characterisation of linear languages. J. Log. Lang. Inf. 15(3), 233–250 (2006). https://doi.org/10.1007/s10849-006-9016-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 205–216. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0022257

    Chapter  Google Scholar 

  24. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: First-order logic definability of free languages. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 310–324. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20297-6_20

    Chapter  MATH  Google Scholar 

  25. Lonati, V., Mandrioli, D., Panella, F., Pradella, M.: Operator precedence languages: their automata-theoretic and logic characterization. SIAM J. Comput. 44(4), 1026–1088 (2015)

    Google Scholar 

  26. Mandrioli, D., Pradella, M.: Generalizing input-driven languages: theoretical and practical benefits. Comput. Sci. Rev. 27, 61–87 (2018). https://doi.org/10.1016/j.cosrev.2017.12.001

    Article  MathSciNet  MATH  Google Scholar 

  27. McNaughton, R.: Parenthesis grammars. J. ACM 14(3), 490–500 (1967)

    Article  MathSciNet  Google Scholar 

  28. McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)

    MATH  Google Scholar 

  29. Nowotka, D., Srba, J.: Height-deterministic pushdown automata. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 125–134. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74456-6_13

    Chapter  Google Scholar 

  30. Pin, J.: Logic on words. In: Current Trends in Theoretical Computer Science, pp. 254–273 (2001)

    Google Scholar 

  31. Floyd, C.: Theory and practice of software development. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 25–41. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59293-8_185

    Chapter  Google Scholar 

  32. Rabinovich, A.: A proof of Kamp’s theorem. Log. Methods Comput. Sci. 10(1), 1–16 (2014). https://doi.org/10.2168/LMCS-10(1:14)2014

    Article  MathSciNet  MATH  Google Scholar 

  33. Salomaa, A.K.: Formal Languages. Academic Press, New York (1973)

    MATH  Google Scholar 

  34. Thatcher, J.: Characterizing derivation trees of context-free grammars through a generalization of finite automata theory. J. Comput. Syst. Sci. 1, 317–322 (1967)

    Article  MathSciNet  Google Scholar 

  35. Thomas, W.: Logical aspects in the study of tree languages. In: Courcelle, B. (ed.) 9th Colloquium on Trees in Algebra and Programming, CAAP 1984, Bordeaux, France, March 5–7, 1984, Proceedings, pp. 31–50. Cambridge University Press (1984)

    Google Scholar 

  36. Trakhtenbrot, B.A.: Finite automata and logic of monadic predicates. Doklady Akademii Nauk SSR 140, 326–329 (1961). (in Russian)

    Google Scholar 

Download references

Acknowledgments

We are grateful to the reviewers for their careful reading and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Pradella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandrioli, D., Pradella, M., Crespi Reghizzi, S. (2020). Star-Freeness, First-Order Definability and Aperiodicity of Structured Context-Free Languages. In: Pun, V.K.I., Stolz, V., Simao, A. (eds) Theoretical Aspects of Computing – ICTAC 2020. ICTAC 2020. Lecture Notes in Computer Science(), vol 12545. Springer, Cham. https://doi.org/10.1007/978-3-030-64276-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64276-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64275-4

  • Online ISBN: 978-3-030-64276-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics