Skip to main content

Spatiotemporal Dynamics of Cancer Phenotypic Quasispecies Under Targeted Therapy

  • Conference paper
  • First Online:
Multidisciplinary Mathematical Modelling

Part of the book series: SEMA SIMAI Springer Series ((ICIAM2019SSSS,volume 11))

  • 313 Accesses

Abstract

Cancer cells have an enormous genetic and phenotypic heterogeneity. Despite modelling this heterogeneity is not trivial, several mathematical and computational models have used the so-called quasispecies theory. This theory, originally conceived to describe the evolution of information in prebiotic systems, has also been applied to investigate fast evolving replicons with large mutation rates, such as RNA viruses and cancer cells. Here, we investigate a quasispecies system composed of healthy and cancer cells with different phenotypic traits. The phenotypes of tumour cells are coded by binary strings including three different compartments with genes involved in cells’ proliferation, in genomic stability, and the so-called house-keeping genes. Previous works have studied this system in well-mixed settings with autonomous ordinary differential equations and stochastic bit-string models. Here, we extend the stochastic bit-strings approach to a spatially explicit system using a cellular automaton (CA). In agreement with the prediction of the well-mixed systems, the spatial one also shows a transition towards tumour extinction at increasing tumour cells’ mutation rates, displaying however different stationary distributions of cancer phenotypes. We also use the CA to simulate targeted cancer therapies against different tumour phenotypes. Our results indicate that a combination therapy targetting the fastest proliferative cancer cells with and without anomalies in the genomic stability compartment is the most effective therapy. Also, a single target of fastest replicative phenotypes is much more effective than targeting cancer cells with anomalies only in the genomic stability compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This amount of cells reproduced the results of the ODEs model [27]. Nevertheless, smaller population sizes will also be used to show dynamics and the emergence of noise-induced bistability [28], also found in the CA model.

References

  1. Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., et al.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012)

    Article  Google Scholar 

  2. Cusnir, M., Cavalcante, L.: Inter-tumor heterogeneity. Hum. Vaccin. Immunother. 8(8), 1143–1145 (2012)

    Article  Google Scholar 

  3. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100, 57–70 (2000)

    Article  Google Scholar 

  4. Hanahan, D., Weinberg, R.A.: Hallmarks of cancer: the next generation. Cell 144, 646–670 (2011)

    Article  Google Scholar 

  5. Hinohara, K., Polyak, K.: Intratumoral heterogeneity: more than just mutations. Trends Cell Biol. 29(7), 569–570 (2019)

    Article  Google Scholar 

  6. Anderson, G.R., Stoler, D.L., Brenner, B.M.: Cancer as an evolutionary consequence of a destabilised genome. Bioessays 23, 103746 (2001)

    Article  Google Scholar 

  7. Loeb, L.A.: A mutator phenotype in cancer. Cancer Res. 61, 3230–3239 (2001)

    Google Scholar 

  8. Loeb, L.A.: Human cancers express the mutator phenotypes: origin, consequences and targeting. Nature 11, 450–457 (2011)

    Google Scholar 

  9. Lengauer, C., Kinzler, K.W.: Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998)

    Google Scholar 

  10. Cahill, D.P., Kinzler, K.W., Vogelstein, B., Lengauer, C.: Genetic instabilities and Darwinian selection in tumors. Trends Genet. 15, M57–M61 (1999)

    Article  Google Scholar 

  11. Merlo, L.M.F., Pepper, J.W., Reid, B.J., Maley, C.C.: Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006)

    Article  Google Scholar 

  12. Sniegowski, P.D., Gerrish, P.J., Lenski, R.E.: Evolution of high mutation rates in experimental populations of E. coli. Nature 387, 703–705 (1997)

    Google Scholar 

  13. Bielas, J.H., Loeb, K.R., Rubin, B.P., True, L.D. et al.: Human cancers express a mutator phenotype. Proc. Natl. Acad. Sci. U.S.A. 103, 18238–8242 (2006)

    Article  Google Scholar 

  14. Fox, E.J., Loeb, L.A.: Lethal mutagenesis: targeting the mutator phenotype in cancer. Semin. Cancer Biol. 20, 353–359 (2010)

    Article  Google Scholar 

  15. Loeb, L.A.: Human cancers express the mutator phenotypes: origin, consequences and targeting. Nature 11, 450–457 (2011)

    Google Scholar 

  16. Oliver, A., Canton, R., Campo, P., Baquero, F. et al.: High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1254 (2000)

    Article  Google Scholar 

  17. Bjedov, I., Tenaillon, O., Gérard, B., Souza, V. et al.: Stress-induced mutagenesis in bacteria. Science 300, 1404–1409 (2003)

    Article  Google Scholar 

  18. Solé, R.V.: Phase transitions in unstable cancer cell populations. Eur. J. Phys. B 35, 117–124 (2003)

    Article  Google Scholar 

  19. Solé, R.V., Deisboeck, T.S.: An error catastrophe in cancer? J. Theor. Biol. 228, 47–54 (2004)

    Article  Google Scholar 

  20. Solé, R.V., Valverde, S., Rodríguez-Caso, C., Sardanyés, J.: Can a minimal replicating construct be identified as the embodiment of cancer? Bioessays 36, 503–512 (2014)

    Article  Google Scholar 

  21. Eigen, M.: Self-organization of matter and the evolution of biological macromolecules. Naturwiss 58, 465–523 (1971)

    Article  Google Scholar 

  22. Eigen, M., McCaskill, J., Schuster, P.: The molecular quasi-species. Adv. Chem. Phys. 75, 149–263 (1989)

    Google Scholar 

  23. Bull, J.J., Meyers, L.A., Lachmann, M.: Quasispecies made simple. PLOS Comput. Biol. 1(6), e61 (2005)

    Article  Google Scholar 

  24. Solé, R.V., Sardanyés, J., Díez, J., Mas, A.: Information catastrophe in RNA viruses through replication thresholds. J. Theor. Biol. 240(3), 353–359 (2006)

    Article  MathSciNet  Google Scholar 

  25. Sardanyés, J., Simó, C., Martínez, R., Solé, R.V., Elena, S.F.: Variability in mutational fitness effects prevents full lethal transitions in large quasispecies populations. Sci. Rep. 4, 4625 (2014)

    Article  Google Scholar 

  26. Sardanyés, J., Martínez, R., Simó, C., Solé, R.: Abrupt transitions to tumor extinction: a phenotypic quasispecies model. J. Math. Biol. 74(7), 1589–1609 (2017)

    Article  MathSciNet  Google Scholar 

  27. Sardanyés, J., Simó, C., Martínez, R.: Trans-heteroclinic bifurcation: a novel type of catastrophic shift. R. Soc. Open Sci. 5, 171304 (2018)

    Article  MathSciNet  Google Scholar 

  28. Sardanyés, J., Alarcón, T.: Noise-induced bistability in the fate of cancer phenotypic quasispecies: a bit-strings approach. Sci. Rep. 8, 1027 (2018)

    Article  Google Scholar 

  29. Padma, V.V.: An overview of targeted cancer therapy. BioMedicine 5, 19 (2015)

    Article  Google Scholar 

  30. Lane, D.: Designer combination therapy for cancer. Nat. Biotech. 24, 163–164 (2006)

    Article  Google Scholar 

  31. Post, D.E., Shim, H., Toussaint-Smith, E., Van Meir, E.G.: Cancer scene investigation: how a cold virus became a tumor killer. Future Oncol. 1, 247–258 (2005)

    Article  Google Scholar 

  32. Roberts, M.S., Lorence, R.M., Groene, W.S., Bamat, M.K.: Naturally oncolytic viruses. Curr. Opin. Mol. Ther. 8, 314–321 (2006)

    Google Scholar 

  33. Vaha-Koskela, M.J., Heikkila, J.E., Hinkkanen, A.E.: Oncolytic viruses in cancer therapy. Cancer Lett. 254, 178–216 (2007)

    Article  Google Scholar 

  34. Wong, H.H., Lemoine, N.R., Wang, Y.: Oncolytic viruses for cancer therapy: overcoming the obstacles. Viruses 2, 78–106 (2010)

    Article  Google Scholar 

  35. Sun, W., Jiang, T., Lu, Y., Reiff, M. et al.: Cocoon-like self-degradable DNA nanoclew for anticancer drug delivery. J. Am. Chem. Soc. 136, 14722–14725 (2014)

    Article  Google Scholar 

  36. Bocharov, G., Ford, N.J., Edwards, J., Breining, T., et al.: A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J. Gen. Virol. 86, 3109–3118 (2005)

    Article  Google Scholar 

  37. Sardanyés, J., Elena, S.F.: Quasispecies spatial models for RNA viruses with different replication modes and infection strategies. PLOS One 6, 24884 (2011)

    Article  Google Scholar 

  38. Ochoa, G.: Error thresholds in genetic algorithms. Evol. Comput. 14(2), 157–182 (2006)

    Article  Google Scholar 

  39. Vogelstein, B. Kinzler, K.W.: Cancer genes and the pathways they control. Nat. Med. 10, 789–799 (2004)

    Article  Google Scholar 

  40. Sardanyés, J., Elena, S.F., Solé, R.V.: Simple quasispecies models for the Survival-of-the-flattest effect: the role of space. J. Theor. Biol. 250(3), 560–568

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by a MINECO grant MTM-2015-71509-C2-1-R and the Spain’s “Agencia Estatal de Investigación” grant RTI2018-098322-B-I00. JS has also been funded by a “Ramón y Cajal” Fellowship (RYC-2017-22243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Sardanyés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Penella, C., Alarcón, T., Sardanyés, J. (2021). Spatiotemporal Dynamics of Cancer Phenotypic Quasispecies Under Targeted Therapy. In: Font, F., Myers, T.G. (eds) Multidisciplinary Mathematical Modelling. SEMA SIMAI Springer Series(), vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-64272-3_1

Download citation

Publish with us

Policies and ethics