Skip to main content

Molecular Landscape of Skin Carcinomas

  • Chapter
  • First Online:
New Therapies in Advanced Cutaneous Malignancies

Abstract

Non-melanoma skin cancers are considered to have one of the highest rates of mutations amongst all human tumours. The majority of aberrations are caused by UV exposure, which induces characteristic “UV signature” mutations. Basal cell carcinoma (BCC) is the most prevalent malignancy amongst the Caucasian population. The primary hallmark of BCCs are aberrations in the Hedgehog (HH) pathway. The PTCH1 gene, a suppressing component of HH signalling, is altered in up to 75% of BCC cases. Nevertheless, several protooncogenes and suppressor genes, including SMO, TP53, MYCN, NOTCH1/2, as well as Hippo pathway proteins, are also significantly deregulated in skin cancers. Other aberrations, reported in skin cancers, affect the TERT promoter, detoxifying proteins, and the NFκB pathway signalling. Moreover, alterations of the TP53 gene are the most frequent mutations in squamous cell carcinomas (SCCs). Genes involved in cell cycle control (CDKN2A, MYC), signalling (EGFR, FGFR1) and differentiation (TP63, SOX2) are often altered in SCCs. In Merkel cell carcinomas (MCCs) mutations occur in RB1, TP53, NOTCH1/2 and in the PI3K-AKT pathway genes. Aberrations in MCCs result from UV exposure as well as Merkel cell polyomavirus infection. It is worth noting that sebaceous carcinoma has a similar spectrum of mutations as SCCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Muzic JG, Wright AC, Alniemi DT, Zubair AS, Olazagasti Lourido JM, Sosa Seda IM, Weaver AL, Baum CL. Incidence and trends of basal cell carcinoma and cutaneous squamous cell carcinoma: a population-based study in Olmsted County, Minnesota, 2000 to 2010. Mayo Clin Proc. 2017;92(6):890–8.

    Article  PubMed  Google Scholar 

  2. Atasoy M, et al. HLA antigen profile differences in patients with SCC (squamous cell carcinoma) in-situ/actinic keratosis and invasive SCC: Is there a genetic succeptibility for invasive SCC development? Eurasian J Med. 2009;41(3):162–4.

    PubMed  PubMed Central  Google Scholar 

  3. Rutkowski P, Owczarek W. Skin carcinomas. Oncol Clin Pract. 2018;14(3):129–47.

    Google Scholar 

  4. Dourmishev LA, Rusinova D, Botev I. Clinical variants, stages, and management of basal cell carcinoma. Indian Dermatol Online J. 2013;4:12–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Clayman GL, et al. Mortality risk from squamous cell skin cancer. J Clin Oncol. 2005;23(4):759–65.

    Article  PubMed  Google Scholar 

  6. Kaae J, Hansen AV, Biggar RJ, Boyd HA, Moore PS, Wohlfahrt J, Melbye M. Merkel cell carcinoma: incidence, mortality, and risk of other cancer. J Natl Cancer Inst. 2010;102(11):793–801.

    Article  PubMed  Google Scholar 

  7. Becker JC, Stang A, DeCaprio JA, Cerroni L, Lebbé C, Veness M, Nghiem P. Merkel cell carcinoma. Nat Rev Dis Primers. 2017;3:17077.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Clarke CA, Robbins HA, Tatalovich Z, Lynch CF, Pawlish KS, Finch JL, Hernandez BY, Fraumeni JF Jr, Madeleine MM, Engels EA. Risk of merkel cell carcinoma after solid organ transplantation. J Natl Cancer Inst. 2015;107(2):dju382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Blake PW, Bradford PT, Devesa SS, Toro JR. Cutaneous appendageal carcinoma incidence and survival patterns in the United States. Arch Dermatol Res. 2010;146(6):625–32.

    Google Scholar 

  10. Craig PJ. An overview of uncommon cutaneous malignancies, including skin appendageal (adnexal) tumours and sarcomas. Clin Oncol. 2019;31(11):769–78.

    Article  CAS  Google Scholar 

  11. Kamińska-Winciorek G, et al. Principles of prophylactic and therapeutic management of skin toxicity during treatment with checkpoint inhibitors. Adv Dermatol Allergol/Postępy Dermatol Alergol. 2019;36(4):382–91.

    Article  Google Scholar 

  12. Paolo Dotto G, Rustgi AK. Squamous cell cancers: a unified perspective on biology and genetics. Cancer Cell. 2016;29(5):622–37.

    Article  PubMed  CAS  Google Scholar 

  13. Martincorena I, et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science. 2015;348(6237):880–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lear JT, Hoban P, Strange RC, Fryer AA. Basal cell carcinoma: from host response and polymorphic variants to tumour suppressor genes. Clin Exp Dermatol. 2005;30:49–55.

    Article  CAS  PubMed  Google Scholar 

  15. Pellegrini C, Maturo MG, Di Nardo L, Ciciarelli V, García-Rodrigo CG, Fargnoli MC. Understanding the Molecular Genetics of Basal Cell Carcinoma. Int J Mol Sci. 2017;18(11):2485.

    Article  PubMed Central  CAS  Google Scholar 

  16. Martinez MAR, Francisco G, Cabral LS, Ruiz IRG, Neto CF. Molecular genetics of non-melanoma skin cancer. Anais Brasileiros de Dermatologia. 2006;81(5):405–19.

    Article  Google Scholar 

  17. Bonilla X, Parmentier L, King B, Bezrukov F, Kaya G, Zoete V, Seplyarskiy VB, Sharpe HJ, McKee T, Letourneau A, Ribaux PG, Popadin K, Basset-Seguin N, Chaabene RB, Santoni FA, Andrianova MA, Guipponi M, Garieri M, Verdan C, Grosdemange K, Sumara O, Eilers M, Aifantis I, Michielin O, de Sauvage FJ, Antonarakis SE, Nikolaev SI. Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet. 2016;48:398–406.

    Article  CAS  PubMed  Google Scholar 

  18. Harms PW, Vats P, Verhaegen ME, Robinson DR, Wu Y-M, Dhanasekaran SM, Palanisamy N, Siddiqui J, Cao X, Fengyun S, Wang R, Xiao H, Kunju LP, Mehra R, Tomlins SA, Fullen DR, Bichakjian CK, Johnson TM, Dlugosz AA, Chinnaiya AM. The distinctive mutational spectra of polyomavirus-negative merkel cell carcinoma. Cancer Res. 2015;75(18):3720–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Small J, Barton V, Peterson B, Alberg AJ. Keratinocyte carcinoma as a marker of a high cancer-risk phenotype. Adv Cancer Res. 2016;130:257–91.

    Article  CAS  PubMed  Google Scholar 

  20. Verkouteren JAC, Pardo LM, Uitterlinden AG, Nijste T. Non-genetic and genetic predictors of a superficial first basal cell carcinoma. J Eur Acad Dermatol Venereol. 2019;33(3):533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts MR, Sordillo JE, Kraft P, Asgari MM. Sex-stratified polygenic risk score identifies individuals at increased risk of basal cell carcinoma. J Invest Dermatol. 2020;140(5):971–5.

    Article  CAS  PubMed  Google Scholar 

  22. Nan H, Kraft P, Hunter DJ, Han J. Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int J Cancer. 2009;125:909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Zwaan SE, Haass NK. Genetics of basal cell carcinoma. Australas J Dermatol. 2010;51:81–94.

    Article  PubMed  Google Scholar 

  24. Tagliabue E, Fargnoli MC, Gandini S, Maisonneuve P, Liu F, Kayser M, Nijsten T, Han J, Kumar R, Gruis NA, Ferrucci L, Branicki W, Dwyer T, Blizzard L, Helsing P, Autier P, García-Borrón JC, Kanetsky PA, Landi MT, Little J, Newton-Bishop J, Sera F, Raimondi S. MC1R gene variants and non-melanoma skin cancer: a pooled-analysis from the M-SKIP project. Br J Cancer. 2015;113:354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van der Poort EKJ, Gunn DA, Beekman M, Griffiths CEM, Slagboom PE, van Heemst D, Noordam R. Basal cell carcinoma genetic susceptibility increases the rate of skin ageing: a Mendelian randomization study. Eur Acad Dermatol Venereol. 2020;34(1):97–100.

    Article  CAS  Google Scholar 

  26. Vishlaghi N, Lisse TS. Exploring vitamin D signaling within skin cancer. Clin Endocrinol. 2020;92(4):273–81.

    Article  CAS  Google Scholar 

  27. Wang L-E, Li C, Strom SS, Goldberg LH, Brewster A, Guo Z, Qiao Y, Clayman GL, Lee JJ, El-Naggar AK, Prieto VG, Duvic M, Lippman SM, Weber RS, Kripke ML, Wei Q. Repair capacity for UV light - induced DNA damage associated with risk of nonmelanoma skin cancer and tumor progression. Clin Cancer Res. 2007;13(21):6532–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tilli CMLJ, Van Steensel MAM, Krekels GAM, Neumann HAM, Ramaekers FCS. Molecular aetiology and pathogenesis of basal cell carcinoma. Br J Dermatol. 2004;152:1108–24.

    Article  CAS  Google Scholar 

  29. Castori M, Morrone A, Kanitakis J, Grammatico P. Genetic skin diseases predisposing to basal cell carcinoma. Eur J Dermatol. 2012;22(3):299–309.

    Article  PubMed  Google Scholar 

  30. Fogel AL, Sarin KY, Teng JMC. Genetic diseases associated with an increased risk of skin cancer development in childhood. Curr Opin Pediatr. 2017;29(4):426–33.

    Article  PubMed  Google Scholar 

  31. Schierbeck J, Vestergaard T, Bygum A. Skin cancer associated genodermatoses: a literature review. Acta Derm Venereol. 2019;99(4):360–9.

    Article  CAS  PubMed  Google Scholar 

  32. Nieuwenburg SA, Adan F, Ruijs MWG, Sonke GS, van Leerdam ME, Crijns MB. Cumulative risk of skin cancer in patients with Li-Fraumeni syndrome. Fam Cancer. 2020;19(4):347–51.

    Article  CAS  PubMed  Google Scholar 

  33. Kalińska-Bienias A, Kowalewski C, Majewski S. The EVER genes – the genetic etiology of carcinogenesis in epidermodysplasia verruciformis and a possible role in non-epidermodysplasia verruciformis patients. Adv Dermatol Allergol. 2016;33(2):75–80.

    Article  Google Scholar 

  34. Hajeer AH, Lear JT, Ollier WE, Naves M, Worthington J, Bell DA, Smith AG, Bowers WP, Jones PW, Strange RC, Fryer AA. Preliminary evidence of an association of tumour necrosis factor microsatellites with increased risk of multiple basal cell carcinomas. Br J Dermatol. 2000;142(3):441–5.

    Article  CAS  PubMed  Google Scholar 

  35. Sahi H, Sihto H, Artama M, Koljonen V, Böhling T, Pukkala E. History of chronic inflammatory disorders increases the risk of Merkel cell carcinoma, but does not correlate with Merkel cell polyomavirus infection. Br J Cancer. 2017;116(2):260–4.

    Article  CAS  PubMed  Google Scholar 

  36. Fahradyan A, Howell AC, Wolfswinkel EM, Tsuha M, Sheth P, Wong AK. Updates on the management of non-melanoma skin cancer (NMSC). Healthcare. 2017;5(4):82.

    Article  PubMed Central  Google Scholar 

  37. Mestre VF, Medeiros-Fonseca B, Estêvão D, Casaca F, Silva S, Félixe A, Silva F, Colaço B, Seixas F, Bastos MMSM, Lopes C, Medeiros R, Oliveira PA, Gil da Costa RM. HPV16 is sufficient to induce squamous cell carcinoma specifically in the tongue base in transgenic mice. J Pathol. 2020;251(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  38. Qibing Zeng AZ. Assessing potential mechanisms of arsenic-induced skin lesions and cancers: human and in vitro evidence. Environ Pollut. 2020;260:113919.

    Article  PubMed  CAS  Google Scholar 

  39. Ho S-Y, Tsai Y-C, Lee M-C, Guo H-R. Merkel cell carcinoma in patients with long-term ingestion of arsenic. J Occup Health. 2005;47(2):188–92.

    Article  PubMed  Google Scholar 

  40. Barton DT, Zens MS, Marmarelis EL, Gilbert-Diamond D, Karagas MR. Cosmetic tattooing and early onset basal cell carcinoma: a population-based case–control study from new hampshire. Epidemiology. 2020;31(3):448–50.

    Article  PubMed  Google Scholar 

  41. Lapouge G, et al. Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci U S A. 2011;108(18):7431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Youssef KK, et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat Cell Biol. 2010;12(3):299–305.

    Article  CAS  PubMed  Google Scholar 

  43. Pellegrini C, et al. Understanding the molecular genetics of basal cell carcinoma. Int J Mol Sci. 2017;18(11):2485.

    Article  PubMed Central  CAS  Google Scholar 

  44. Jayaraman SS, Rayhan DJ, Hazany S, Kolodney MS. Mutational landscape of basal cell carcinomas by whole-exome sequencing. J Invest Dermat. 2014;134:213–20.

    Article  CAS  Google Scholar 

  45. Liu Y, Liu H, Bian Q. Identification of potential biomarkers associated with basal cell carcinoma. Hindawi BioMed Res Int. 2020;2020:2073690.

    Google Scholar 

  46. Jun Wan, Hongji Dai, Xiaoli Zhang, Sheng Liu, Yuan Lin, Ally-Khan Somani, Jingwu Xie, Jiali Han. Distinct transcriptomic landscapes of cutaneous basal cell carcinomas and squamous cell carcinomas. Genes Dis; 2019.

    Google Scholar 

  47. Goodman AM, et al. Genomic landscape of advanced basal cell carcinoma: implications for precision treatment with targeted and immune therapies. Onco Targets Ther. 2018;7(3):e1404217.

    Google Scholar 

  48. Katoh Y, Katoh M. Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med. 2009;9(7):873–86.

    Article  CAS  PubMed  Google Scholar 

  49. Huq AJ, Walsh M, Rajagopalan B, Finlay M, Trainer AH, Bonnet F, Sevenet N, Winship IM. Mutations in SUFU and PTCH1 genes may cause different cutaneous cancer predisposition syndromes: similar, but not the same. Fam Cancer. 2018;17:601–6.

    Article  CAS  PubMed  Google Scholar 

  50. Regl G, et al. The zinc-finger transcription factor GLI2 antagonizes contact inhibition and differentiation of human epidermal cells. Oncogene. 2004;23(6):1263–74.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang H, et al. Role of PTCH and p53 genes in early-onset basal cell carcinoma. Am J Pathol. 2001;158(2):381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Skodric-Trifunovic V, et al. Novel patched 1 mutations in patients with nevoid basal cell carcinoma syndrome--case report. Croat Med J. 2015;56(1):63–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ogden T, et al. The relevance of a suppressor of fused (SUFU) mutation in the diagnosis and treatment of Gorlin syndrome. JAAD Case Rep. 2018;4(2):196–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pricl S, et al. Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol Oncol. 2015;9(2):389–97.

    Article  CAS  PubMed  Google Scholar 

  55. Kim AL, Back JH, Chaudhary SC, Zhu Y, Athar M, Bickers DR. SOX9 transcriptionally regulates mTOR-induced proliferation of basal cell carcinomas. J Invest Dermatol. 2018;138(8):1716–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bigelow RL, Chari NS, Unden AB, Spurgers KB, Lee S, Roop DR, Toftgård R, McDonnel TJ. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem. 2003;279(9):1197–205.

    PubMed  Google Scholar 

  57. Shea CR, et al. Overexpression of p53 protein in basal cell carcinomas of human skin. Am J Pathol. 1992;141(1):25–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Neill GW, Harrison WJ, Ikram MS, Williams TDL, Bianchi LS, Nadendla SK, Green JL, Ghali L, Frischauf A-M, O’Toole EA, Aberger F, Philpott MP. GLI1 repression of ERK activity correlates with colony formation and impaired migration in human epidermal keratinocytes. Carcinogenesis. 2008;29(4):738–46.

    Article  CAS  PubMed  Google Scholar 

  59. D’Errico M, et al. UV mutation signature in tumor suppressor genes involved in skin carcinogenesis in xeroderma pigmentosum patients. Oncogene. 2000;19(3):463–7.

    Article  PubMed  Google Scholar 

  60. Boonchai W, et al. Expression of p53 in arsenic-related and sporadic basal cell carcinoma. Arch Dermatol. 2000;136(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  61. Bolshakov S, et al. p53 mutations in human aggressive and nonaggressive basal and squamous cell carcinomas. Clin Cancer Res. 2003;9(1):228–34.

    CAS  PubMed  Google Scholar 

  62. Ziegler A, et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci U S A. 1993;90(9):4216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosenstein BS, et al. p53 mutations in basal cell carcinomas arising in routine users of sunscreens. Photochem Photobiol. 1999;70(5):798–806.

    Article  CAS  PubMed  Google Scholar 

  64. Ouhtit A, et al. UV-radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J Natl Cancer Inst. 1998;90(7):523–31.

    Article  CAS  PubMed  Google Scholar 

  65. Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutat. 2003;21(3):217–28.

    Article  CAS  PubMed  Google Scholar 

  66. Smirnov A, et al. p63 is a promising marker in the diagnosis of unusual skin cancer. Int J Mol Sci. 2019;20(22):5781.

    Article  CAS  PubMed Central  Google Scholar 

  67. Zheng Z, Kye Y, Zhang X, Kim A, Kim I. Expression of p63, bcl-2, bcl-6 and p16 in basal cell carcinoma and squamous cell carcinoma of the skin. Korean J Pathol. 2005;39:91–8.

    Google Scholar 

  68. Eshkoor SA, et al. p16 gene expression in basal cell carcinoma. Arch Med Res. 2008;39(7):668–73.

    Article  CAS  PubMed  Google Scholar 

  69. Soufir N, et al. P16 UV mutations in human skin epithelial tumors. Oncogene. 1999;18(39):5477–81.

    Article  CAS  PubMed  Google Scholar 

  70. Bartos V. Expression of p16 protein in cutaneous basal cell carcinoma: still far from being clearly understood. Acta Dermatovenerol Croat. 2020;28(1):43–4.

    PubMed  Google Scholar 

  71. Villada G, et al. A limited immunohistochemical panel to distinguish basal cell carcinoma of cutaneous origin from basaloid squamous cell carcinoma of the head and neck. Appl Immunohistochem Mol Morphol. 2018;26(2):126–31.

    Article  CAS  PubMed  Google Scholar 

  72. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–7.

    Article  CAS  PubMed  Google Scholar 

  73. Stacey SN, et al. New basal cell carcinoma susceptibility loci. Nat Commun. 2015;6:6825.

    Article  CAS  PubMed  Google Scholar 

  74. Freier K, et al. Recurrent NMYC copy number gain and high protein expression in basal cell carcinoma. Oncol Rep. 2006;15(5):1141–5.

    CAS  PubMed  Google Scholar 

  75. Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30(1):1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma S, Meng Z, Chen R, Guan K-L. The hippo pathway: biology and pathophysiology. Annu Rev Biochem. 2019;88:577–604.

    Article  CAS  PubMed  Google Scholar 

  77. Maglic D, et al. YAP-TEAD signaling promotes basal cell carcinoma development via a c-JUN/AP1 axis. EMBO J. 2018;37(17):e98642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Quan T, et al. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation. Am J Pathol. 2014;184(4):937–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller SJ. Etiology and pathogenesis of basal cell carcinoma. Clin Dermatol. 1995;13(6):527–36.

    Article  CAS  PubMed  Google Scholar 

  80. Reyes O, et al. Mucina1 (MUC1) en los engrosamientos epidérmicos del carcinoma basocelular (CBC). Med Cutan Ibero Lat Am. 2019;47(3):178–87.

    Google Scholar 

  81. Jia J, et al. LGR5 expression is controlled by IKKalpha in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget. 2016;7(19):27280–94.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Shi FT, et al. Notch signaling is significantly suppressed in basal cell carcinomas and activation induces basal cell carcinoma cell apoptosis. Mol Med Rep. 2017;15(4):1441–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nicolas M, et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet. 2003;33(3):416–21.

    Article  CAS  PubMed  Google Scholar 

  84. Maturo MG, Rachakonda S, Heidenreich B, Pellegrini C, Srinivas N, Requena C, Serra-Guillen C, Llombart B, Sanmartin O, Guillen C, Di Nardo L, Peris K, Fargnoli MC, Nagore E, Kumar R. Coding and noncoding somatic mutations in candidate genes in basal cell carcinoma. Sci Rep. 2020;10:8005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Griewank KG, et al. TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma. PLoS One. 2013;8(11):e80354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Scott GA, Laughlin TS, Rothberg PG. Mutations of the TERT promoter are common in basal cell carcinoma and squamous cell carcinoma. Mod Pathol. 2014;27(4):516–23.

    Article  CAS  PubMed  Google Scholar 

  87. Moloney FJ, Lyons JG, Bock VL, Huang XX, Bugeja MJ, Halliday GM. Hotspot mutation of Brahma in non-melanoma skin cancer. J Invest Dermatol. 2009;129(4):1012–5.

    Article  CAS  PubMed  Google Scholar 

  88. Bock VL, et al. BRM and BRG1 subunits of the SWI/SNF chromatin remodelling complex are downregulated upon progression of benign skin lesions into invasive tumours. Br J Dermatol. 2011;164(6):1221–7.

    Article  CAS  PubMed  Google Scholar 

  89. Denisova E, et al. Frequent DPH3 promoter mutations in skin cancers. Oncotarget. 2015;6(34):35922–30.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nebert DW, Vasiliou V. Analysis of the glutathione S-transferase (GST) gene family. Hum Genomics. 2004;1(6):460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Karahan N, et al. Increased expression of COX-2 in recurrent basal cell carcinoma of the skin: a pilot study. Indian J Pathol Microbiol. 2011;54(3):526–31.

    Article  PubMed  Google Scholar 

  92. Kaiser U, et al. Polarization and distribution of tumor-associated macrophages and COX-2 expression in basal cell carcinoma of the ocular adnexae. Curr Eye Res. 2018;43(9):1126–35.

    Article  CAS  PubMed  Google Scholar 

  93. Müller-Decker K. Cyclooxygenase-dependent signaling is causally linked to non-melanoma skin carcinogenesis: pharmacological, genetic, and clinical evidence. Cancer Metastasis Rev. 2011;30:343–61.

    Article  PubMed  CAS  Google Scholar 

  94. Chen Y, Liu J. The prognostic roles of cyclooxygenase-2 for patients with basal cell carcinoma. Artif Cells Nanomed Biotechnol. 2019;47(1):3053–7.

    Article  CAS  PubMed  Google Scholar 

  95. Jee SH, et al. Overexpression of interleukin-6 in human basal cell carcinoma cell lines increases anti-apoptotic activity and tumorigenic potency. Oncogene. 2001;20(2):198–208.

    Article  CAS  PubMed  Google Scholar 

  96. Jee SH, et al. Interleukin-6 induced basic fibroblast growth factor-dependent angiogenesis in basal cell carcinoma cell line via JAK/STAT3 and PI3-kinase/Akt pathways. J Invest Dermatol. 2004;123(6):1169–75.

    Article  CAS  PubMed  Google Scholar 

  97. Sławińska M, Zabłotna M, Gleń J, Lakomy J, Nowicki RJ, Sobjanek M. STAT3 polymorphisms and IL-6 polymorphism are associated with the risk of basal cell carcinoma in patients from northern Poland. Arch Dermatol Res. 2019;311:697–704.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sternberg C, et al. Synergistic cross-talk of hedgehog and interleukin-6 signaling drives growth of basal cell carcinoma. Int J Cancer. 2018;143(11):2943–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fathi F, Ebrahimi M, Eslami A, Hafezi H, Eskandari N, Motedayyen H. Association of programmed death-1 gene polymorphisms with the risk of basal cell carcinoma. Int J Immunogenet. 2019;46:444–50.

    Article  CAS  PubMed  Google Scholar 

  100. Rompel R, Petres J, Kaupert K, Mueller-Eckhardt G. HLA phenotypes and multiple basal cell carcinomas. Dermatology. 1994;189(3):222–4.

    Article  CAS  PubMed  Google Scholar 

  101. de Carvalho AV, et al. Positivity for HLA DR1 is associated with basal cell carcinoma in renal transplant patients in southern Brazil. Int J Dermatol. 2012;51(12):1448–53.

    Article  PubMed  CAS  Google Scholar 

  102. Czarnecki D, et al. Multiple basal cell carcinomas and HLA frequencies in southern Australia. J Am Acad Dermatol. 1991;24(4):559–61.

    Article  CAS  PubMed  Google Scholar 

  103. Vineretsky KA, et al. Skin cancer risk is modified by KIR/HLA interactions that influence the activation of natural killer immune cells. Cancer Res. 2016;76(2):370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Vineretsky KA, Karagas MR, Christensen BC, Kuriger-Laber JK, Perry AE, Storm CA, Nelson HH. Skin cancer risk is modified by KIR/HLA interactions that influence the activation of natural killer immune cells. Cancer Res. 2016;76(2):370–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. de la Fouchardière A, Cabaret O, Savin L, Combemale P, Schvartz H, Penet C, Bonadona V, Soufir N, Bressac-de Paillerets B. Germline BAP1 mutations predispose also to multiple basal cell carcinomas. Clin Genet. 2015;88(3):273–7.

    Article  PubMed  CAS  Google Scholar 

  106. Alam M, Ratner D. Cutaneous squamous-cell carcinoma. N Engl J Med. 2001;344(13):975–83.

    Article  CAS  PubMed  Google Scholar 

  107. Schmults CD, et al. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: a 10-year, single-institution cohort study. JAMA Dermatol. 2013;149(5):541–7.

    Article  PubMed  Google Scholar 

  108. Corina Lorz, Carmen Segrelles, Ricardo Errazquin and Ramon Garcia-Escudero, Comprehensive molecular characterization of squamous cell carcinomas, in squamous cell carcinoma - hallmark and treatment modalities, H.E. Daaboul, Editor; 2019.

    Google Scholar 

  109. Black AP, Ogg GS. The role of p53 in the immunobiology of cutaneous squamous cell carcinoma. Clin Exp Immunol. 2003;132(3):379–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Campos MA, et al. Prognostic significance of RAS mutations and P53 expression in cutaneous squamous cell carcinomas. Genes (Basel). 2020;11(7):751.

    Article  CAS  PubMed Central  Google Scholar 

  111. Poeta ML, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Warren TA, et al. Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process. Sci Rep. 2016;6(1):34081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Missero C, Antonini D. p63 in squamous cell carcinoma of the skin: more than a stem cell/progenitor marker. J Invest Dermatol. 2017;137(2):280–1.

    Article  CAS  PubMed  Google Scholar 

  114. Hsieh MH, et al. p63 and SOX2 dictate glucose reliance and metabolic vulnerabilities in squamous cell carcinomas. Cell Rep. 2019;28(7):1860–1878.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Koh SP, Brasch HD, de Jongh J, Itinteang T, Tan ST. Cancer stem cell subpopulations in moderately differentiated head and neck cutaneous squamous cell carcinoma. Heliyon. 2019;5(8):e02257.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Watanabe H, et al. SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest. 2014;124(4):1636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pacifico A, Leone G. Role of p53 and CDKN2A inactivation in human squamous cell carcinomas. J Biomed Biotechnol. 2007;2007(3):43418.

    PubMed  PubMed Central  Google Scholar 

  118. Saridaki Z, et al. Mutational analysis of CDKN2A genes in patients with squamous cell carcinoma of the skin. Br J Dermatol. 2003;148(4):638–48.

    Article  CAS  PubMed  Google Scholar 

  119. Brown VL, et al. p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol. 2004;122(5):1284–92.

    Article  CAS  PubMed  Google Scholar 

  120. Li YY, et al. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res. 2015;21(6):1447–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shen Y, et al. Cyclin D1 expression in Bowen’s disease and cutaneous squamous cell carcinoma. Mol Clin Oncol. 2014;2(4):545–8.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yu SL, et al. Identification of mTOR inhibitor-resistant genes in cutaneous squamous cell carcinoma. Cancer Manag Res. 2018;10:6379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Pelengaris S, et al. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell. 1999;3(5):565–77.

    Article  CAS  PubMed  Google Scholar 

  124. Toll A, et al. MYC gene numerical aberrations in actinic keratosis and cutaneous squamous cell carcinoma. Br J Dermatol. 2009;161(5):1112–8.

    Article  CAS  PubMed  Google Scholar 

  125. Lohcharoenkal W, et al. MicroRNA-203 inversely correlates with differentiation grade, targets c-MYC, and functions as a tumor suppressor in cSCC. J Invest Dermatol. 2016;136(12):2485–94.

    Article  CAS  PubMed  Google Scholar 

  126. Lefort K, et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev. 2007;21(5):562–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zhang M, et al. Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Med. 2016;5(8):2048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Corchado-Cobos R, et al. Cutaneous squamous cell carcinoma: from biology to therapy. Int J Mol Sci. 2020;21(8):2956.

    Article  CAS  PubMed Central  Google Scholar 

  129. Canueto J, et al. Epidermal growth factor receptor expression is associated with poor outcome in cutaneous squamous cell carcinoma. Br J Dermatol. 2017;176(5):1279–87.

    Article  CAS  PubMed  Google Scholar 

  130. Hoesl C, Fröhlich T, Hundt JE, Kneitz H, Goebeler M, Wolf R, Schneider MR, Dahlhoff M. The transmembrane protein LRIG2 increases tumor progression in skin carcinogenesis. Mol Oncol. 2019;13(11):2476–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Strickley JD, et al. Metastatic squamous cell carcinoma of the skin with clinical response to lapatinib. Exp Hematol Oncol. 2018;7:20.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ahmed NU, Ueda M, Ichihashi M. Increased level of c-erbB-2/neu/HER-2 protein in cutaneous squamous cell carcinoma. Br J Dermatol. 1997;136(6):908–12.

    Article  CAS  PubMed  Google Scholar 

  133. Czyz M. Fibroblast growth factor receptor signaling in skin cancers. Cell. 2019;8(6):540.

    Article  CAS  Google Scholar 

  134. Hertzler-Schaefer K, et al. Pten loss induces autocrine FGF signaling to promote skin tumorigenesis. Cell Rep. 2014;6(5):818–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Su F, et al. RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med. 2012;366(3):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kern F, Niault T, Baccarini M. Ras and Raf pathways in epidermis development and carcinogenesis. Br J Cancer. 2011;104(2):229–34.

    Article  CAS  PubMed  Google Scholar 

  137. Al-Rohil RN, et al. Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer. 2016;122(2):249–57.

    Article  CAS  PubMed  Google Scholar 

  138. Chen SJ, et al. Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2. Br J Dermatol. 2009;160(2):442–5.

    Article  PubMed  Google Scholar 

  139. Hervás-Marín D, Higgings F, Sanmartín O, López-Guerrero JA, Carmen Bañó M, Carlos Igual J, Quilis I, Sandoval J. Genome wide DNA methylation profiling identifies specific epigenetic features in high-risk cutaneous squamous cell carcinoma. PLoS One. 2019;14(12):e0223341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Hernández-Ruiz E, Toll A, García-Diez I, Andrades E, Ferrandiz-Pulido C, Masferrer E, Yébenes M, Jaka A, Gimeno J, Gimeno R, García-Patos V, Pujol RM, Hernández-Muñoz I. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis. 2018;39(9):503–13.

    Article  PubMed  CAS  Google Scholar 

  141. Xie Q, Wang H, Heilman ER, Walsh MG, Haseeb MA, Gupta R. Increased expression of enhancer of Zeste Homolog 2 (EZH2) differentiates squamous cell carcinoma from normal skin and actinic keratosis. Eur J Dermatol. 2014;24(1):41–5.

    Article  PubMed  Google Scholar 

  142. Anastasi S, Alemà S, Segatto O. Making sense of Cbp/p300 loss of function mutations in skin tumorigenesis. J Pathol. 2019;249:39–51.

    CAS  Google Scholar 

  143. Park E, Liu B, Xia X, Zhu F, Jami W-B, Hu Y. Role of IKKα in skin squamous cell carcinomas. Future Oncol. 2011;7(1):123–34.

    Article  CAS  PubMed  Google Scholar 

  144. Descargues P, Sil AK, Karin M. IKKα, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J. 2008;27(20):2639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Colomer C, Marruecos L, Vert A, Bigas A, Espinosa L. NF-κB members left home: NF-κB-independent roles in cancer. Biomedicine. 2017;5:26.

    Google Scholar 

  146. Descargues P, Sik AK, Sano Y, Korchynskyi O, Han G, Owens P, Wang X-J, Karin M. IKKalpha is a critical coregulator of a Smad4-independent TGFbeta-Smad2/3 signalling pathway that controls keratinocyte differentiation. Proc Natl Acad Sci U S A. 2008;105(7):2487–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Mulero MC, Ferres-Marco D, Islam A, Margalef P, Pecoraro M, Toll A, Drechsel N, Charneco C, Davis S, Bellora N, Gallardo F, López-Arribillaga E, Asensio-Juan E, Rodilla V, González J, Iglesias M, Vincent S, Mar Albà M, Di Croce L, Hoffmann A, Miyamoto S, Villà-Freixa J, López-Bigas N, Keyes WM, Domínguez M, Bigas A, Espinosa L. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer. Cancer Cell. 2013;24(2):151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Toll A, Margalef P, Masferrer E, Ferrándiz-Pulido C, Gimeno J, Pujol RM, Bigas A, Espinosa L. Active nuclear IKK correlates with metastatic risk in cutaneous squamous cell carcinoma. Arch Dermatol Res. 2015;307(8):721–9.

    Article  CAS  PubMed  Google Scholar 

  149. Pickering CR, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res. 2014;20(24):6582–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Albibas AA, et al. Subclonal evolution of cancer-related gene mutations in p53 immunopositive patches in human skin. J Invest Dermatol. 2018;138(1):189–98.

    Article  CAS  PubMed  Google Scholar 

  151. Murao K, et al. Epigenetic abnormalities in cutaneous squamous cell carcinomas: frequent inactivation of the RB1/p16 and p53 pathways. Br J Dermatol. 2006;155(5):999–1005.

    Article  CAS  PubMed  Google Scholar 

  152. Liu W, MacDonald M, You J. Merkel cell polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol. 2016;20:20–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Cheng J, Rozenblatt-Rosen O, Paulson KG, Nghiem P, DeCapri JA. Merkel cell polyomavirus large T antigen has growth-promoting and inhibitory activities. J Virol. 2013;87(11):6118–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Goh G, Walradt T, Markarov V, Blom A, Riaz N, Doumani R, Stafstrom K, Moshiri A, Yelistratova L, Levinsohn J, Chan TA, Nghiem P, Lifton RP, Choi J. Mutational landscape of MCPyV-positive and MCPyV-negative Merkel cell carcinomas with implications for immunotherapy. Oncotarget. 2015;7(3):3403–15.

    Article  PubMed Central  Google Scholar 

  155. Harms PW, et al. The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nat Rev Clin Oncol. 2018;15(12):763–76.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Feng H, et al. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science. 2008;319(5866):1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Chen T, et al. Serological evidence of Merkel cell polyomavirus primary infections in childhood. J Clin Virol. 2011;50(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  158. Velasquez C, et al. Characterization of a merkel cell polyomavirus-positive merkel cell carcinoma cell line CVG-1. Front Microbiol. 2018;9:713.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kwun HJ, Chang Y, Moore PS. Protein-mediated viral latency is a novel mechanism for Merkel cell polyomavirus persistence. Proc Natl Acad Sci U S A. 2017;114(20):E4040–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sahi H, et al. RB1 gene in Merkel cell carcinoma: hypermethylation in all tumors and concurrent heterozygous deletions in the polyomavirus-negative subgroup. APMIS. 2014;122(12):1157–66.

    Article  CAS  PubMed  Google Scholar 

  161. Hesbacher S, et al. RB1 is the crucial target of the Merkel cell polyomavirus Large T antigen in Merkel cell carcinoma cells. Oncotarget. 2016;7(22):32956–68.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Van Gele M, et al. Mutation analysis of P73 and TP53 in Merkel cell carcinoma. Br J Cancer. 2000;82(4):823–6.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lassacher A, et al. p14ARF hypermethylation is common but INK4a-ARF locus or p53 mutations are rare in Merkel cell carcinoma. J Invest Dermatol. 2008;128(7):1788–96.

    Article  CAS  PubMed  Google Scholar 

  164. Houben R, et al. Mechanisms of p53 restriction in Merkel cell carcinoma cells are independent of the Merkel cell polyoma virus T antigens. J Invest Dermatol. 2013;133(10):2453–60.

    Article  CAS  PubMed  Google Scholar 

  165. Park DE, et al. Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response. Proc Natl Acad Sci U S A. 2019;116(3):1027–32.

    Article  CAS  PubMed  Google Scholar 

  166. Wardhani LO, et al. Expression of notch 3 and jagged 1 Is associated with merkel cell polyomavirus status and prognosis in merkel cell carcinoma. Anticancer Res. 2019;39(1):319–29.

    Article  CAS  PubMed  Google Scholar 

  167. Dasgupta T, Wilson LD, Yu JB. A retrospective review of 1349 cases of sebaceous carcinoma. Cancer Metastasis Rev. 2008;115(1):158–65.

    Google Scholar 

  168. Dores GM, Curtis RE, Toro JR, Devesa SS, Fraumeni JF Jr. Incidence of cutaneous sebaceous carcinoma and risk of associated neoplasms: Insight into Muir-Torré syndrome. Cancer Metastasis Rev. 2008;113(12):3372–81.

    Google Scholar 

  169. North JP, Golovato J, Vaske CJ, Sanborn JZ, Nguyen A, Wu W, Goode B, Stevers M, McMullen K, Perez White BE, Collisson EA, Bloomer M, Solomon DA, Benz SC, Cho RJ. Cell of origin and mutation pattern define three clinically distinct classes of sebaceous carcinoma. Nat Commun. 2018;9:1894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Roberts ME, Riegert-Johnson DL, Thomas BC, Rumilla KM, Thomas CS, Heckman MG, Purcell JU, Hanson NB, Leppig KA, Lim J, Cappel MA. A clinical scoring system to identify patients with sebaceous neoplasms at risk for the Muir–Torre variant of Lynch syndrome. Genet Med. 2014;16:711–6.

    Article  PubMed  Google Scholar 

  171. De Giorgi V, Salvati L, Barchielli A, Caldarella A, Gori A, Scarfì F, Savarese I, Pimpinelli N, Urso C, Massi D. The burden of cutaneous adnexal carcinomas and the risk of associated squamous cell carcinoma: a population-based study. Br J Dermatol. 2018;180(3):565–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Ewa Bartnik for proofreading of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna M. Czarnecka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czarnecka, A.M., Stachyra, K. (2021). Molecular Landscape of Skin Carcinomas. In: Rutkowski, P., Mandalà, M. (eds) New Therapies in Advanced Cutaneous Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-64009-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64009-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64008-8

  • Online ISBN: 978-3-030-64009-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics