Skip to main content

Bioactive Phytochemicals from Jatropha (Jatropha curcas L.) Oil Processing Byproducts

  • Living reference work entry
  • First Online:
Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Jatropha (Jatropha curcas) is a versatile plant with a wide range of qualities, applications, and great potential. About 175 species make up the genus Jatropha, which is part of the Euphorbiaceae family. Worldwide cultivation of the Jatropha curcas plant is practiced, with a concentration in Central and South America. Jatropha curcas is eventually one of the most important energy crops worldwide. Vegetable oil that is produced from oilseeds may be used to make premium biodiesel. Over 75% of the seed weight in different extraction methods remains as a Jatropha curcas pressed cake (PC), which is rich in ash, protein, and carbohydrates. Therefore, vast amounts of Jatropha curcas PC would be created in areas where massive amounts of Jatropha curcas oil are being processed for the biodiesel industry. In addition, the jatropha species are well known for being an excellent source of secondary metabolites and phytochemicals with various biological characteristics. The Jatropha genus includes flavonoids, cyclic peptides, eudesmenoic acids, lignans, alkaloids, coumarins, and terpenes. Jatropha species’ extracts and extracted bioactive compounds exhibit antifungal, cytotoxic, antimicrobial, AChE inhibition, anti-inflammatory, larvicidal, antioxidant, insecticidal, and poisonous properties. Biocomposites, briquettes, bioethanol, biogas, pyloritic products, syngas, organic fertilizer, protein, animal feed, and syngas are only a few applications for Jatropha curcas PC. This work reports on the bioactive phytochemicals produced as byproducts during the processing of jatropha (Jatropha curcas L.) oil and discusses Jatropha curcas PC valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Laviola BG, Rodrigues EV, Teodoro PE, Peixoto LA, Bhering LL (2017) Biometric and biotechnology strategies in Jatropha genetic breeding for biodiesel production. Renew Sust Energ Rev 76:894–904

    Article  CAS  Google Scholar 

  2. Cavalcante NB, da Conceição D, Santos A, da Silva G, Almeida JR (2020) The genus Jatropha (Euphorbiaceae): a review on secondary chemical metabolites and biological aspects. Chem Biol Interact 318:108976. https://doi.org/10.1016/j.cbi.2020.108976

    Article  PubMed  CAS  Google Scholar 

  3. Khalil HA, Aprilia NA, Bhat AH, Jawaid M, Paridah MT, Rudi D (2013) A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sustain Energy Rev 22:667–685

    Article  CAS  Google Scholar 

  4. Contran N, Chessa L, Lubino M, Bellavite D, Roggero P, Enne G (2013) State-of-the-art of the Jatropha curcas productive chain: from sowing to biodiesel and by-products. Ind Crop Prod 42:202–215. https://doi.org/10.1016/j.indcrop.2012.05.037

    Article  CAS  Google Scholar 

  5. Singh D, Sharma D, Soni SL, Inda CS, Sharma S, Sharma PK, Jhalani A (2021) A comprehensive review of physicochemical properties, production process, performance and emissions characteristics of 2nd generation biodiesel feedstock: Jatropha Curcas. Fuel 285:119110. https://doi.org/10.1016/j.fuel.2020.119110

    Article  CAS  Google Scholar 

  6. Kumar S, Gupta AK, Naik SN (2003) Conversion of non-edible oil into biodiesel. J Sci Ind Res 62:124–132

    CAS  Google Scholar 

  7. Jingura RM, Kamusoko R (2018) Technical options for valorisation of Jatropha press-cake: a review. Waste Biomass Valor 9:701–713. https://doi.org/10.1007/s12649-017-9837-9

    Article  CAS  Google Scholar 

  8. Singh RN, Vyas DK, Srivastava NSL, Madhuri N (2008) SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. Renew Energy 33:1868–1873

    Article  CAS  Google Scholar 

  9. Abreu F (2009) Alternative by-products from Jatropha. http://www.ifad.org/events/jatropha/harvest/f_Abreu.ppt

  10. Bhattacharjee S, Haldar S, Reddy A, Ghose N, Gautam S, Bhattacharjee A, Jain V (2012) By-products of biodiesel manufacture. Warnock International

    Google Scholar 

  11. Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R, Muys B (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084

    Article  CAS  Google Scholar 

  12. ABC - Advanced Biofuel Center (2022) Jaipur, Rajasthan. www.jatrophaworld.org. Last accessed

  13. Nath LK, Dutta SK (1991) Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol 43:111–114

    Article  PubMed  CAS  Google Scholar 

  14. Nithiyanantham S, Siddhuraju P, Francis G (2012) Potential of Jatropha curcas as a biofuel, animal feed and health products. J Am Oil Chem Soc 89:961–972. https://doi.org/10.1007/s11746-012-2012-3

    Article  CAS  Google Scholar 

  15. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28:1–10

    Article  CAS  Google Scholar 

  16. Chhabra SC, Mahunnah RL, Mshiu EN (1990) Plants used in traditional medicine in eastern Tanzania III. Angiosperms (Euphorbiaceae to Menispermaceae). J Ethnopharmacol 28:255–283

    Article  PubMed  CAS  Google Scholar 

  17. Lestari D, Mulder J, Sanders PM (2011) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53:297–304

    Article  CAS  Google Scholar 

  18. Nath LK, Dutta SK (1997) Acute toxicity studies and wound healing response of curcain, a proteolytic enzyme extracted from latex of Jatropha curcas L. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. DBV-Verlag Für Die Technische Universität Graz, Graz, pp 82–86

    Google Scholar 

  19. Van den Berg AJ, Horsten SF, Kettenes-van den Bosch JJ, Kroes BH, Beukelman CJ, Leeflang BR, Labadie RP (1995) Curcacycline A-a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 358(3):215–218

    Article  PubMed  Google Scholar 

  20. Auvin C, Baraguey C, Blond A, Lezenven F, Pousset J-L, Bodo B (1997) Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett 38(16):2845–2848

    Article  CAS  Google Scholar 

  21. Insanu M, Dimaki C, Wilkins R et al (2013) Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications. Phytochem Rev 12:107–119. https://doi.org/10.1007/s11101-012-9258-0

    Article  CAS  Google Scholar 

  22. Shimada T (2006) Salivary proteins as a defence against dietary tannins. J Chem Ecol 32:1149–1163

    Article  PubMed  CAS  Google Scholar 

  23. Hodek P, Trefil P, Stiborova M (2002) Flavonoids-potent and versatile biologically active compounds interacting with cytochrome P450. Chem Biol Interact 139:1–21

    Article  PubMed  CAS  Google Scholar 

  24. Martin C, Moure A, Martın G, Carrillo E, Domınguez H, Parajo JC (2010) Fractional characterisation of Jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass Bioenergy 33:533–538

    Article  CAS  Google Scholar 

  25. Marrufo-Estrada DM, Segura-Campos MR, Chel-Guerrero LA, BetancurAncona DA (2013) Defatted Jatropha curcas flour and protein isolate as materials for protein hydrolysates with biological activity. Food Chem 138(1):77–83. https://doi.org/10.1016/j.foodchem.2012.09.033

    Article  PubMed  CAS  Google Scholar 

  26. Severa G, Edwards M, Cooney MJ (2017) Bio-oil extraction of Jatropha curcas with ionic liquid co-solvent: fate of biomass protein. Bioresour Technol 226(1):255–261. https://doi.org/10.1016/j.biortech.2016.11.125

    Article  PubMed  CAS  Google Scholar 

  27. MiliĂŁo GL, Leite MiliĂŁo G, Hanke de Oliveira AP, de Souza Soares L, Arruda TR, Nascif Rufino Vieira E, Ricardo de Castro Leite Junior B (2022) Unconventional food plants: nutritional aspects and perspectives for industrial applications. Future Foods 5:100124. https://doi.org/10.1016/j.fufo.2022.100124

    Article  CAS  Google Scholar 

  28. León-Villanueva A, Huerta-Ocampo JA, Barrera-Pacheco A, Medina-Godoy S, Barba de la Rosa AP (2018) Proteomic analysis of non-toxic Jatropha curcas byproduct cake: fractionation and identification of the major components. Ind Crop Prod 111(10):694–704. https://doi.org/10.1016/j.indcrop.2017.11.046

    Article  CAS  Google Scholar 

  29. Phull AR, Abbas Q, Ali A, Zia M, Haq IU, Kim SJ (2020) Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future J Pharm Sci 2(1):31–36

    Article  Google Scholar 

  30. Rahu MI, Naqvi SHA, Memon NH, Idrees M, Kandhro F, Pathan NL, Sarker MNI, Aqeel Bhutto M (2021) Determination of antimicrobial and phytochemical compounds of Jatropha curcas plant. Saudi J Biol Sci 28(5):2867–2876. https://doi.org/10.1016/j.sjbs.2021.02.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9(3):462–465

    CAS  Google Scholar 

  32. Zengin G, Mahomoodally MF, Sinan KI, Ak G, Etienne OK, Sharmeen JB, Brunetti L, Leone S, Di Simone SC, Recinella L, Chiavaroli A, Menghini L, Orlando G, Jekő J, Cziáky Z, Ferrante C (2021) Chemical composition and biological properties of two Jatropha species: different parts and different extraction methods. Antioxidants (Basel) 10(5):792. https://doi.org/10.3390/antiox10050792

    Article  CAS  Google Scholar 

  33. Ravindranath N, Ravinder Reddy M, Ramesh C, Ramu R, Prabhakar A, Jagadeesh B, Das B (2004) New lathyrane and podocarpane diterpenoids from Jatropha curcas. Chem Pharm Bull 52(5):608–611

    Article  CAS  Google Scholar 

  34. Ravindranath N, Reddy MR, Mahender G, Ramu R, Kumar KR, Das B (2004b) Deoxypreussomerins from Jatropha curcas: are they also plant metabolites? Phytochemistry 65(16):2387–2390

    Article  PubMed  CAS  Google Scholar 

  35. Staubmann R, Schubert-Zsilavecz M, Hiermann A, Kartnig T (1998) A complex of 5-hydroxypyrrolidin-2-one and pyrimidine-2,4-dione isolated from Jatropha curcas. Phytochemistry 50(2):337–338

    Article  Google Scholar 

  36. Naengchomnong W, Tarnchompoo B, Thebtaranonth Y (1994) (?)-jatrophol, (?)-marmesin, propacin, and jatrophin from the roots of Jatropha curcas (Euphorbiaceae). J Sci Soc 20(2):73–83

    Google Scholar 

  37. Subramanian SS, Nagarajan S, Sulochana N (1971) Flavonoids of some euphorbiaceous plants. Phytochemistry 10(10):2548–2549

    Article  CAS  Google Scholar 

  38. Olloqui EJ, Castañeda-Ovando A, Evangelista-Lozano S et al (2022) Measurement of nutrients and minor components of a non-toxic variety of Jatropha curcas. Food Measure 16:1029–1037. https://doi.org/10.1007/s11694-021-01229-6

    Article  Google Scholar 

  39. Islam AKMA, Yaakob Z, Anuar N (2011) Jatropha: a multipurpose plant with considerable potential for the tropics. Sci Res Essays 6:2597–2605

    Google Scholar 

  40. Gübitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    Article  Google Scholar 

  41. Reena T, Sah Nand K, Sharma PB (2008) Therapeutic biology of Jatropha curcas: a mini review. Curr Pharm Biotechnol 9:315–324

    Article  Google Scholar 

  42. Ye M, Li CY, Francis G, Makkar HPS (2009) Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agrofor Syst 76:487–497

    Article  Google Scholar 

  43. Khanna P, Raison R (1986) Effect of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Soil Res 24(3):423–434

    Article  CAS  Google Scholar 

  44. Igbinosa O, Igbinosa E, Aiyegoro O (2009) Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). African J Pharm Pharmacol 3(2):058–062

    Google Scholar 

  45. Mishra SB, Vijayakumjar M, Ojha SK, Verma A (2010) Antidiabetic effect of Jatropha curcas L. leaves extract in normal and alloxan-induced diabetic rats. Int J Pharm Sci 2(1):482–487

    Google Scholar 

  46. Bhandari U, Pillai K (2005) Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. J Ethnopharmacol 97(2):227–230

    Article  PubMed  Google Scholar 

  47. Sarker MNI, Azam SMM, Parvin S, Rahman MS (2019) DNA fingerprinting and molecular characterization of Brassica cultivars using RAPD markers. Res J Biotechnol 14:40–44

    CAS  Google Scholar 

  48. Francis G, Makkar HP, Becker K (2001) Antinutritional factors present in plantderived alternate fish feed ingredients and their effects in fish. Aquaculture 199(3–4):197–227

    Article  CAS  Google Scholar 

  49. Phengnuam T, Goroncy AK, Rutherfurd SM, Moughan PJ, Suntornsuk W (2013) DPPH radical scavenging activity of a mixture of fatty acids and peptide-containing compounds in a protein hydrolysate of Jatropha curcas seed cake. J Agric Food Chem 61(48):11808–11816. https://doi.org/10.1021/jf4035964

    Article  PubMed  CAS  Google Scholar 

  50. Devappa RK, Makkar HP, Becker K (2010) Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from jatropha: review. J Agric Food Chem 58(11):6543–6555. https://doi.org/10.1021/jf100003z

    Article  PubMed  CAS  Google Scholar 

  51. Devappa RK, Makkar HPS, Becker K (2010) Biodegradation of Jatropha curcas phorbol esters in soil. J Sci Food Agric 90:2090–2097

    Article  PubMed  CAS  Google Scholar 

  52. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of nontoxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215

    Article  CAS  Google Scholar 

  53. Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157

    Article  CAS  Google Scholar 

  54. Sharath BS, Mohankumar BV, Somashekar D (2014) Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation. Appl Biochem Biotechnol 172(5):2747–2757. https://doi.org/10.1007/s12010-013-0698-9

    Article  PubMed  CAS  Google Scholar 

  55. Gomes TG, Hadi SIIA, Costa Alves GS, Mendonça S, De Siqueira FG, Miller RNG (2018) Current strategies for the detoxification of Jatropha curcas seed cake: a review. J Agric Food Chem 66(11):2510–2522. https://doi.org/10.1021/acs.jafc.7b05691

    Article  PubMed  CAS  Google Scholar 

  56. da Silva Barroso W, Leite TA, de Abreu Feitosa V et al (2021) Jatropha curcas L. seed cake residue as an alternative source for obtaining curcin: a type 1 ribosome-inactivating protein. Waste Biomass Valor 12:5587–5597. https://doi.org/10.1007/s12649-021-01412-2

    Article  CAS  Google Scholar 

  57. Prasad DMR, Izam A, Khan MMR (2012) Jatropha curcas: plant of medical benefits. J Med Plants Res 6:2691–2699

    Google Scholar 

  58. Tsouh Fokou PV, Nyarko AK, Appiah-Opong R, Tchokouaha Yamthe LR, Addo P, Asante IK, Boyom FF (2015) Ethnopharmacological reports on anti-Buruli ulcer medicinal plants in three West African countries. J Ethnopharmacol 172:297–311. https://doi.org/10.1016/j.jep.2015.06.024

    Article  PubMed  Google Scholar 

  59. Lans C, Harper T, Karla Georges K, Bridgewater E (2001) Medicinal and ethnoveterinary remedies of hunters in Trinidad. BMC Complement Altern Med 1:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Abdu-Aguye I, Sannusi A, Alafiya-Tayo RA, Bhusnurmath SR (1986) Acute toxicity studies with Jatropha curcas L. Hum Toxicol 5:269–274

    Article  PubMed  CAS  Google Scholar 

  61. Singhal KK, Chavali K, Nangalu R, Chavan P (2013) Absence of diarrhea in purge nut ingestion: a case series of eight children. J Ayurveda Integr Med 4:176–180

    Article  PubMed  PubMed Central  Google Scholar 

  62. Navarro-Pineda FS, Baz-Rodriguez SA, Handler R, Sacramento-Rivero JC (2016) Advances on the processing of Jatropha towards a whole-crop biorefinery. Renew Sustain Energy Rev 54:247–269

    Article  CAS  Google Scholar 

  63. Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S (2010) Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47(2):283–287. https://doi.org/10.1016/j.ijbiomac.2010.04.007

    Article  PubMed  CAS  Google Scholar 

  64. Mitra S, Ghose A, Gujre N, Senthilkumar S, Borah P, Paul A, Rangan L (2021) A review on environmental and socioeconomic perspectives of three promising biofuel plants Jatropha curcas, Pongamia pinnata and Mesua ferrea. Biomass Bioenergy 151:106173. https://doi.org/10.1016/j.biombioe.2021.106173

    Article  Google Scholar 

  65. León-Villanueva A, Espinosa-Alonso LG, Udenigwe CC, Valdez-Morales M, Valdez-Ortiz A, Barba de la Rosa AP et al (2022) Chemical and functional characterization of major protein fractions extracted from nontoxic Jatropha curcas byproduct meals. J Am Oil Chem Soc 9:511–523. https://doi.org/10.1002/aocs.12581

    Article  CAS  Google Scholar 

  66. Guimarães MB, de Siqueira FG, Campanha RB et al (2022) Evaluation of bio-detoxification of Jatropha curcas seed cake and cottonseed cake by basidiomycetes: nutritional and antioxidant effects. Waste Biomass Valor 13:1475–1490. https://doi.org/10.1007/s12649-021-01599-4

    Article  CAS  Google Scholar 

  67. Joglekar S, Kisan K, Mayur D, Manish H (2011) Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex. Mater Lett 65:3170–3172

    Article  CAS  Google Scholar 

  68. Piloto-RodrĂ­guez R, TobĂ­o I, Ortiz-Alvarez M, DĂ­az Y, Konradi S, Pohl S (2020) An approach to the use of Jatropha curcas by-products as energy source in agroindustry, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. https://doi.org/10.1080/15567036.2020.1749192

  69. Adekunle AS, Adeleke AA, Ikubanni PP, Adewuyi OA (2020) Comparative analyses of the inhibitive influence of Cascabela thevetia and Jatropha curcas leaves extracts on mild steel. Nature Environment & Pollution Technology 19(3):923–933. https://doi.org/10.46488/nept.2020.v19i03.003

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Fawzy Ramadan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramadan, M.F. (2022). Bioactive Phytochemicals from Jatropha (Jatropha curcas L.) Oil Processing Byproducts. In: Ramadan Hassanien, M.F. (eds) Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-products. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-63961-7_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63961-7_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63961-7

  • Online ISBN: 978-3-030-63961-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics