Skip to main content

Introduction to Biosensors

  • Living reference work entry
  • First Online:
Handbook of Bioanalytics

Abstract

Nowadays, biosensors are gaining more and more attention due to their advantages and a broad area of their application including medical diagnostics, pharmaceutical analyses, environment monitoring, and food quality verification. The presented chapter is devoted to the basic issues related to biosensors such as biological receptors and mechanisms of biological recognition, the most commonly used components of immobilization composites, and the applied detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Brzózka, Z., & Wróblewski, W. (1999). Sensory chemiczne (pp. 7–11, 111, 112, 123–133). Oficyna Wydawnicza Politechniki Warszawskiej.

    Google Scholar 

  2. Cammann, K., Lemke, U., Rohen, A., et al. (1991). Chemical sensor and biosensors – Principles and applications. Angewandte Chemie, International Edition, 30, 516–539.

    Article  Google Scholar 

  3. Banica, F.-G. (2012). Chemical sensors and biosensors: Fundamentals and applications (pp. 1–6, 28, 36, 44, 47, 101–104, 118–119, 122–125, 157, 367, 404, 473). Wiley Publications.

    Google Scholar 

  4. Brzózka Z. (red.) (2009). Mikrobioanalityka (pp. 128–136, 167). Oficyna Wydawnicza Politechniki Warszawskiej.

    Google Scholar 

  5. Asal, M., Özen, O., Sahinler, M., & Polatoglu, I. (2018). Recent developments in enzyme, DNA and immuno-based biosensors. Sensors, 18, 1924.

    Article  CAS  Google Scholar 

  6. Sabu, C., Henna, T. K., Raphey, V. R., et al. (2019). Advanced biosensors for glucose and insulin. Biosensors & Bioelectronics, 141, 111201.

    Article  CAS  Google Scholar 

  7. Pollap, A., & Kochana, J. (2019). Electrochemical immunosensors for antibiotic detection. Biosensors, 9, 61.

    Article  CAS  Google Scholar 

  8. Szadkowski, B., & Pingot, M. (2016). Nanorurki węglowe – materiał przyszłości. Eliksir, 1(3), 16–18.

    Google Scholar 

  9. Tîlmaciu, C. M., & Morris, M. C. (2015). Carbon nanotube biosensors. Front Chem, 3, 1–29.

    Article  CAS  Google Scholar 

  10. Hebda, M., & Łopata, A. (2012). Grafen – materiał przyszłości. Mechanika. Czasopismo Techniczne, 22, 45–53.

    Google Scholar 

  11. Dai, J.-F., Wang, G.-J., Ma, L., & Wu, C.-K. (2015). Surface properties of graphene: Relationship to graphene-polymer composites. Reviews on Advanced Materials Science, 40, 60–71.

    CAS  Google Scholar 

  12. Pena-Bahamonde, J., Nguyen, H. N., Fanourakis, S. K., & Rodrigues, D. F. (2018). Recent advances in graphene-based biosensor technology with applications in life sciences. Nano, 16, 1–17.

    Google Scholar 

  13. Gościańska, J., Przewoźna, M., & Pietrzak, R. (2012). Otrzymywanie, charakterystyka i zastosowanie mezoporowatych węgli w procesach adsorpcyjnych. w: Adsorbenty i katalizatory: wybrane technologie a środowisko (red. J. Ryczkowski). Uniwersytet Rzeszowski, Rzeszów: 111–128.

    Google Scholar 

  14. Niebrzydowska, P., & Kuśtrowski, P. (2012). Mezoporowate materiały węglowe uzyskiwane na bazie krzemionek. w: Adsorbenty i katalizatory: wybrane technologie a środowisko (red. J. Ryczkowski). Uniwersytet Rzeszowski, Rzeszów: 93–110.

    Google Scholar 

  15. Ndamanisha, J. C., & Guoa, L. (2012). Ordered mesoporous carbon for electrochemical sensing: A review. Analytica Chimica Acta, 747, 19–28.

    Article  CAS  Google Scholar 

  16. Kochana, J., Wapiennik, K., Knihnicki, P., et al. (2016). Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Analytical and Bioanalytical Chemistry, 408, 5199–5210.

    Article  CAS  Google Scholar 

  17. Bobrowska, D. M., Olszyńska, P., Imierska, M., & Czyrko, J. (2015). Nanocebulki węglowe oraz ich potencjalne zastosowanie w biomedycynie. Nauki Inżynierskie i Technologie, 2(17), 9–21.

    Google Scholar 

  18. Choma, J., Kloske, M., Dziura, A., et al. (2016). Otrzymywanie i badanie właściwości adsorpcyjnych mikroporowatych kul węglowych. Inżynieria i Ochrona Środowiska, 19(2), 169–182.

    CAS  Google Scholar 

  19. Mohapatra, J., Ananthoju, B., Nair, V., et al. (2018). Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Applied Surface Science, 442, 332–341.

    Article  CAS  Google Scholar 

  20. Zhang, C., Zhang, S., Jia, Y., et al. (2019). Sandwich-type electrochemical immunosensor for sensitive detection of CEA based on the enhanced effects of Ag NPs@CS spaced Hemin/rGO. Biosensors & Bioelectronics, 126, 785–791.

    Article  CAS  Google Scholar 

  21. Gerard, M., Chaubey, A., & Malhotra, B. (2002). Application of conducting polymers to biosensors. Biosensors & Bioelectronics, 17, 345–359.

    Article  CAS  Google Scholar 

  22. Soylemez, S., Kanik, F., Ileri, M., et al. (2014). Development of a novel biosensor based on a conducting polymer. Talanta, 118, 84–89.

    Article  CAS  Google Scholar 

  23. Kanik, F., Kolb, M., Timur, S., et al. (2013). An amperometric acetylcholine biosensor based on a conducting polymer. International Journal of Biological Macromolecules, 59, 111–118.

    Article  CAS  Google Scholar 

  24. Traczewska, T. (2012). Interdyscyplinarne zagadnienia w inżynierii i ochronie środowiska. Chemiczne wzmacnianie sygnałów w sensorach i biosensorach. Tom 2. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław: 135–136.

    Google Scholar 

  25. Nie, L., Liu, F., Ma, P., & Xiao, X. (2014). Applications of gold nanoparticles in optical biosensors. Journal of Biomedical Nanotechnology, 10, 2700–2721.

    Article  CAS  Google Scholar 

  26. Doria, G., Conde, J., Veigas, B., et al. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12(2), 1657–1687.

    Article  CAS  Google Scholar 

  27. Luo, X., Morrin, A., Killard, A. J., & Smyth, M. R. (2006). Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis, 18(4), 319–326.

    Article  CAS  Google Scholar 

  28. Holzinger, M., Le Goff, A., & Cosnier, S. (2014). Nanomaterials for biosensing applications: A review. Frontiers in Chemistry, 2, 1–10.

    Article  CAS  Google Scholar 

  29. Dwiecki, K., Nogala-Kałucka, M., & Polewski, K. (2014). Zastosowanie kropek kwantowych do oznaczania składników i zanieczyszczeń żywności. Żywność. Nauka. Technologia. Jakość, 3(94), 5–13.

    Google Scholar 

  30. Wyszogrodzka, G., & Dorożyński, P. (2015). Sieci metaloorganiczne (MOF) – nowa grupa mezoporowatych polimerow koordynacyjnych i ich potencjalne zastosowanie w technologii postaci leku. Polimery w Medycynie, 45, 81–93.

    PubMed  Google Scholar 

  31. Carrasco, S. (2018). Metal-organic frameworks for the development of biosensors: A current overview. Biosensors, 8, 1–30.

    Article  CAS  Google Scholar 

  32. Spichigler-Keller, U. E. (1998). Chemical sensors and biosensors for medical and biological applications (pp. 33–37). Wiley-VCH.

    Book  Google Scholar 

  33. Szczepaniak, W. (1996). Metody instrumentalne w analizie chemicznej (pp. 384–389). Wydawnictwo Naukowe PWN.

    Google Scholar 

  34. Wei, X., Zheng, L., Luo, F., et al. (2013). Fluorescence biosensor for the H5N1 antibody based on a metal-organic framework platform. Journal of Materials Chemistry B, 8, 1812–1817.

    Article  CAS  Google Scholar 

  35. Li, G., Lian, J., Zheng, X., & Cao, J. (2010). Electrogenerated chemiluminescence biosensor for glucose based on poly(luminol-aniline) nanowires composite modified electrode. Biosensors & Bioelectronics, 26, 643–648.

    Article  CAS  Google Scholar 

  36. Ibupoto, Z. H., Ali, S. M. U., Khun, K., et al. (2011). ZnO nanorods based enzymatic biosensor for selective determination of penicillin. Biosensors, 1, 153–163.

    Article  CAS  Google Scholar 

  37. Unnikrishnan, B., Palanisamy, S., & Chen, S. M. (2013). A simple electrochemical approach to fabricate a glucose biosensor based on graphene–glucose oxidase biocomposite. Biosensors & Bioelectronics, 39, 70–75.

    Article  CAS  Google Scholar 

  38. Qi, H., Wang, C., & Cheng, N. (2010). Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Microchimica Acta, 170, 33–38.

    Article  CAS  Google Scholar 

  39. Bahner, N., Reich, P., Frense, D., et al. (2018). An aptamer-based biosensor for detection of doxorubicin by electrochemical impedance spectroscopy. Analytical and Bioanalytical Chemistry, 410, 1453–1462.

    Article  CAS  Google Scholar 

  40. Ramanathan, K., & Danielsson, B. (2001). Principles and applications of thermal biosensors. Biosensors & Bioelectronics, 16, 417–423.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanta Kochana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kochana, J., Pollap, A., Madej, M. (2022). Introduction to Biosensors. In: Buszewski, B., Baranowska, I. (eds) Handbook of Bioanalytics. Springer, Cham. https://doi.org/10.1007/978-3-030-63957-0_33-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63957-0_33-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63957-0

  • Online ISBN: 978-3-030-63957-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics