Skip to main content

Smart Wearable Devices for Remote Patient Monitoring in Healthcare 4.0

  • Chapter
  • First Online:
Internet of Medical Things

Part of the book series: Internet of Things ((ITTCC))

Abstract

Smart wearable health-monitoring devices can help patients to avoid unnecessary hospital visits, thereby saving time and better utilizing medical resources. This chapter discusses remote patient monitoring (RPM) using a vital component of the Internet of Medical Things (IoMT), an integrated and complete health care framework that allows individuals to send their health statistics from anywhere and transmit them to caregivers. Medical professionals/caretakers can assess individuals in need of medical assistance and suggest remedial measures on demand, in case of emergency. Health variables such as heart rate, body temperature, pulse rate, and blood pressure can be observed in the smart wearables. These wearables are connected to a monitoring system, which sends the information stored in a server connected through the internet. The necessary details can be visualized and administered on any remote device, such as a laptop computer or smartphone connected to the server/internet. This RPM system allows the end-users to keep track of health-related risks effectively; it also decreases the cost of collecting/capturing health information continuously. The system can reduce the need for an affected person to travel to a health professional every time he or she needs to check any vital health statistics, thereby improving the health system’s overall efficiency in terms of time, money, and other benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IoT Healthcare Solutions-Medical Internet of Things for Healthcare. https://medium.com/@itcubeservice/iot-healthcare-solutions-medical-internet-of-things-for-healthcare-1f9aac81aad6

  2. The Digital Universe in 2020: Big Data, Bigger Digital Shadows, and Biggest Growth in the Far East. https://www.emc.com/leadership/digitaluniverse/2012iview/big-data-2020.htm

  3. Shahid, N., & Aneja, S. (2017). Internet of things: Vision, application areas and research challenges. In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics, and Cloud) (I-SMAC), Palladam, pp. 583–587.

    Google Scholar 

  4. He, D., & Zeadally, S. (2015). An analysis of RFID authentication schemes for the internet of things in healthcare environment using elliptic curve cryptography. IEEE Internet of Things Journal, 2, 72–83.

    Article  Google Scholar 

  5. Stankovic, J. A. (2014, February). Research directions for the Internet of things. IEEE Internet of Things Journal, 1(1), 3–9.

    Article  Google Scholar 

  6. Ullah, S., Higgins, H., Braem, B., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36, 1065–1094.

    Article  Google Scholar 

  7. Majumder, S., Aghayi, E., Noferesti, M., Memarzadeh-Tehran, H., Mondal, T., Pang, Z., & Deen, M. (2017). Smart homes for elderly healthcare – Recent advances and research challenges. Sensors, 17, 2496.

    Google Scholar 

  8. Agoulmine, N., Deen, M., Lee, J., & Meyyappan, M. (2011). U-Health smart home. IEEE Nanotechnology Magazine, 5, 6–11.

    Article  Google Scholar 

  9. Lack, L., Gradisar, M., Van Someren, E., Wright, H., & Lushington, K. (2008). The relationship between insomnia and body temperatures. Sleep Medicine Reviews, 12, 307–317.

    Article  Google Scholar 

  10. Kräuchi, K., Konieczka, K., Roescheisen-Weich, C., Gompper, B., Hauenstein, D., Schoetzau, A., Fraenkl, S., & Flammer, J. (2013). Diurnal and menstrual cycles in body temperature are regulated differently: A 28-day ambulatory study in healthy women with thermal discomfort of cold extremities and controls. Chronobiology International, 31, 102–113.

    Article  Google Scholar 

  11. Coyne, M., Keswick, C., Doherty, T., Kolka, M., & Stephenson, L. (2000). Circadian rhythm changes in core temperature over the menstrual cycle: A method for non-invasive monitoring. American Journal of Physiology-Regulatory, Integrative, and Comparative Physiology, 279, R1316–R1320.

    Article  Google Scholar 

  12. Shibasaki, K., Suzuki, M., Mizuno, A., & Tominaga, M. (2007). Effects of body temperature on neural activity in the Hippocampus: Regulation of resting membrane potentials by transient receptor potential Vanilloid 4. Journal of Neuroscience, 27, 1566–1575.

    Article  Google Scholar 

  13. Boano, C., Lasagni, M., Romer, K., & Lange, T. (2011). Accurate temperature measurements for medical research using body sensor networks. In 2011 14th IEEE International symposium on object/component/service-oriented real-time distributed computing workshops.

    Google Scholar 

  14. Boano, C., Lasagni, M., & Romer, K. (2013). Non-invasive measurement of core body temperature in Marathon runners. In 2013 IEEE International conference on body sensor networks.

    Google Scholar 

  15. Chen, W., Dols, S., Oetomo, S., & Feijs, L. (2010). A monitoring body temperature of newborn infants at neonatal intensive care units using wearable sensors. In Proceedings of the Fifth international conference on body area networks – BodyNets ’10.

    Google Scholar 

  16. Mansor, H., Shukor, M., Meskam, S., Rusli, N., & Zamery, N. (2013). Body temperature measurement for the remote health monitoring system. In 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA).

    Google Scholar 

  17. Asaduzzaman Miah, M., Mir Hussain Kabir, Siddiqur Rahman Tanveer, M., Akhand, M. (2015). Continuous heart rate and body temperature monitoring system using Arduino U.N.O. and Android device. In 2015 2nd International Conference on Electrical Information and Communication Technologies (EICT).

    Google Scholar 

  18. Sim, S. Y., Lee, W. K., Baek, H.J., & Park, K. S. (2012). A non-intrusive temperature measuring system for estimating deep body temperature in bed. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, pp. 3460–3463.

    Google Scholar 

  19. Kitamura, K.-I., Zhu, X., Chen, W., & Nemoto, T. (2010). Development of a new method for the non-invasive measurement of deep body temperature without a heater. Medical Engineering & Physics, 32, 1–6.

    Article  Google Scholar 

  20. Mulroy, S., Gronley, J., Weiss, W., Newsam, C., & Perry, J. (2003). Use of cluster analysis for gait pattern classification of patients in the early and late recovery phases following stroke. Gait & Posture, 18, 114–125.

    Article  Google Scholar 

  21. Coutinho, E. S. F., Bloch, K. V., & Coeli, C. M. (2012). One-year mortality among elderly people after hospitalization due to fall-related fractures: Comparison with a control group of matched elderly. Cadernos de Saúde Pública, 28, 801–805.

    Article  Google Scholar 

  22. Ni, B., Wang, G., & Moulin, P. (2013). RGBD-HuDaAct: A color-depth video database for human daily activity recognition. In Consumer depth cameras for computer vision (pp. 193–208). London: Springer.

    Google Scholar 

  23. Deen, M. J. (2015). Information and communications technologies for elderly ubiquitous healthcare in a smart home. Personal and Ubiquitous Compuing, 19, 573–599.

    Article  Google Scholar 

  24. Bertolotti, G. M., Cristiani, A. M., Colagiorgio, P., Romano, F., Bassani, E., Caramia, N., & Ramat, S. A. (2016). Wearable and modular inertial unit for measuring limb movements and balance control abilities. IEEE Sensors Journal, 16, 790–797.

    Article  Google Scholar 

  25. Panahandeh, G., Mohammadiha, N., Leijon, A., & Handel, P. (2013). Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Transactions on Instrumentation and Measurement, 62, 1073–1083.

    Article  Google Scholar 

  26. Friedman, N., Rowe, J. B., Reinkensmeyer, D. J., & Bachman, M. (2014). The manometer: A wearable device for monitoring daily use of the wrist and fingers. IEEE Journal of Biomedical and Health Informatics, 18, 1804–1812.

    Article  Google Scholar 

  27. El-Gohary, M., & Mcnames, J. (2015). Human joint angle estimation with inertial sensors and validation with a RobotArm. IEEE Transactions on Biomedical Engineering, 62, 1759–1767.

    Article  Google Scholar 

  28. Chernikova, O. S. (2018). An adaptive unscented Kalman filter approach for state estimation of nonlinear continuous-discrete system. In 2018 XIV International scientific-technical conference on Actual Problems of Electronic Instrument Engineering (APEIE), Novosibirsk, pp. 37–40.

    Google Scholar 

  29. Wang, Z., Wang, F., & Ji, X. (2019). Analysis of autonomic nervous system based on HRV. In 2019 4th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), Hohhot, China, pp. 309–3095.

    Google Scholar 

  30. Bakker, J., Pechenizkiy, M., & Sidorova, N. (2011). What’s your current stress level? Detection of stress patterns from GSR sensor data. In 2011 IEEE 11th international conference on data mining workshops, Vancouver, BC, Canada, pp. 573–580.

    Google Scholar 

  31. Eng, S., Al-Mai, O., & Ahmadi, M. (2018). A 6 DoF, wearable, compliant shoe sensor for total ground reaction measurement. IEEE Transactions on Instrumentation and Measurement, 67(11), 2714–2722.

    Article  Google Scholar 

  32. Crivello, A., Barsocchi, P., Girolami, M., & Palumbo, F. (2019). The meaning of sleep quality: A survey of available technologies. IEEE Access, 7, 167374–167390.

    Article  Google Scholar 

  33. Hernando-Gallego, F., Luengo, D., & Artés-Rodríguez, A. (2018). Feature extraction of galvanic skin responses by nonnegative sparse deconvolution. IEEE Journal of Biomedical and Health Informatics, 22(5), 1385–1394.

    Article  Google Scholar 

  34. Haghi, M., Stoll, R., & Thurow, K. (2019). Pervasive and personalized ambient parameters monitoring: A wearable, modular, and configurable watch. IEEE Access, 7, 20126–20143.

    Article  Google Scholar 

  35. Setz, C., Arnrich, B., Schumm, J., Marca, R. L., Troster, G., & Ehlert, U. (2010). Discriminating stress from cognitive load using a wearable EDA device. IEEE Transactions Information Technology in Biomedicine, 14, 410–417.

    Article  Google Scholar 

  36. Akbulut, F. P., Özgür, Ö., & Cınar, İ. (2019). e-Vital: A wrist-worn wearable sensor device for measuring vital parameters. In 2019 Medical technologies congress (TIPTEKNO), Izmir, Turkey, pp. 1–4.

    Google Scholar 

  37. Tasneem Usha, R., Sazid Sejuti, F., & Islam, S. (2019). Smart monitoring service through self sufficient healthcare gadget for elderly. In 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Rourkela, India, pp. 276–279.

    Google Scholar 

  38. Somov, A., Alonso, E. T., Craciun, M. F., Neves, A. I. S., & Baldycheva, A. (2017). Smart textile: Exploration of wireless sensing capabilities. In 2017 IEEE Sensors, Glasgow, pp. 1–3.

    Google Scholar 

  39. Yu, H., Zheng, Z., Ma, J., Zheng, Y., Yang, M., & Jiang, X. (2017). Temperature and strain sensor based on a few-mode photonic crystal fiber. In 2017 IEEE Sensors, Glasgow, pp. 1–3.

    Google Scholar 

  40. Takeshita, T., Yoshida, M., Takei, Y., Ouchi, A., & Kobayashi, T. (2019). Cubic flocked electrode embedding amplifier circuit for smart ECG textile application. In 2019 20th International conference on solid-state sensors, Actuators and microsystems & eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, pp. 2189–2192.

    Google Scholar 

  41. Chen, H., et al. (2020). Design of an integrated wearable multi-sensor platform based on flexible materials for neonatal monitoring. IEEE Access, 8, 23732–23747.

    Article  Google Scholar 

  42. Nemati, E., Deen, M., & Mondal, T. (2012). A wireless wearable ECG sensor for long-term applications. IEEE Communications Magazine, 50, 36–43.

    Article  Google Scholar 

  43. Kõiv, H., Pesti, K., Min, M., Land, R., & Must, I. (2020). Comparison of the carbon nanofiber-/fiber- and silicone-based electrodes for bioimpedance measurements. IEEE Transactions on Instrumentation and Measurement, 69(4), 1455–1463.

    Article  Google Scholar 

  44. Cho, G., Jeong, K., Paik, M. J., Kwun, Y., & Sung, M. (2011). Performance evaluation of textile-based electrodes and motion sensors for smart clothing. IEEE Sensors Journal, 11(12), 3183–3193.

    Article  Google Scholar 

  45. López, L., Domínguez, G. E., Cardiel, E., & Hernández, P. R. (2019). Wireless measurement system for mean body temperature estimation. In 2019 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), Buenos Aires, Argentina, pp. 1–6.

    Google Scholar 

  46. Caya, M. V. C. et al. (2017). Basal body temperature measurement using e-textile. In 2017 IEEE 9th international conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, pp. 1–4.

    Google Scholar 

  47. Narczyk, P., Siwiec, K., & Pleskacz, W. A. (2016). Precision human body temperature measurement based on thermistor sensor. In 2016 IEEE 19th international symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), Kosice, pp. 1–5.

    Google Scholar 

  48. Rajdi, N. N. Z. M., Bakira, A. A., Saleh, S. M., & Wicaksono, D. H. (2012). Textile-based micro electro mechanical system (MEMS) accelerometer for pelvic tilt measurement. Procedia Engineering, 41, 532–537.

    Article  Google Scholar 

  49. Baumbauer, C., Ting, J., Thielens, A., Rabaey, J., & Arias, A. C. (2019). Towards wireless flexible printed wearable sensors. In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), Otranto, Italy.

    Google Scholar 

  50. Silva, A. F. D., Pedro, R., Paulo, J., & Higino, J. (2013). Photonic sensors based on flexible materials with FBGs for use on biomedical applications. In Current trends in short- and long-period fiber gratings (pp. 105–132). Rijeka: InTech.

    Google Scholar 

  51. Kaysir, M. R., Stefani, A., Lwin, R., & Fleming, S. (2017). Flexible optical fiber sensor based on polyurethane. In 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Singapore, pp. 1–2.

    Google Scholar 

  52. Bojović, B., Giupponi, L., Ali, Z., & Miozzo, M. (2019). Evaluating unlicensed LTE Technologies: LAA vs LTE-U. IEEE Access, 7, 89714–89751.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariharan, U., Rajkumar, K., Akilan, T., Jeyavel, J. (2021). Smart Wearable Devices for Remote Patient Monitoring in Healthcare 4.0. In: Hemanth, D.J., Anitha, J., Tsihrintzis, G.A. (eds) Internet of Medical Things. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-63937-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63937-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63936-5

  • Online ISBN: 978-3-030-63937-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics