Skip to main content

Application and Perspectives of Convolutional Neural Networks in Digital Intelligence

  • Conference paper
  • First Online:
Towards Digital Intelligence Society (DISA 2020)

Abstract

Convolutional neural networks are the state-of-the-art approach for advanced computer vision tasks, as they offer capabilities beyond straightforward application for image processing. This review provides an introduction to five areas where convolutional neural networks are a core topic of research: 2D and 3D object classification, image segmentation, few-shot learning, reinforcement learning and explainability of neural networks. Each section provides an introduction to the research topic, identifies the main research questions, and lists modern solutions to these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  2. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4), 193–202 (1980)

    Article  Google Scholar 

  3. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  4. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  5. Stanford Vision Lab Stanford University, P.U.: (imagenet large-scale visual recognition challenge). http://www.image-net.org/

  6. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  7. Szegedy, C.,Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., et al.: Going deeper with convolutions. arxiv 2014. arXiv preprint arXiv:1409.4842, 1409 (2014)

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Y.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. arXiv preprint arXiv:1803.11527 (2018)

  10. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, pp. 820–830 (2018)

    Google Scholar 

  11. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  12. Shi, B., Bai, S., Zhou, Z., Bai, X.: DeepPano: deep panoramic representation for 3-d shape recognition. IEEE Signal Process. Lett. 22(12), 2339–2343 (2015)

    Article  Google Scholar 

  13. Maturana, D., Scherer, S.: Voxnet: A 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  14. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graphics (TOG) 36(4), 1–11 (2017)

    Google Scholar 

  15. Yu, Y., Makihara, Y., Yagi, Y.: Pedestrian segmentation based on a Spatio-temporally consistent graph-cut with optimal transport. IPSJ Trans. Comput. Vision Appl. 11(1), 10 (2019)

    Article  Google Scholar 

  16. Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., Van Der Laak, J.A., Van Ginneken, B., Sanchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  17. Shen, D., Wu, G., Suk, H.I.: Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 19, 221–248 (2017)

    Article  Google Scholar 

  18. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)

    Google Scholar 

  19. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9404–9413 (2019)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  22. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833. Springer (2014)

    Google Scholar 

  23. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Deep Learning and Data Labeling for Medical Applications, pp. 179–187. Springer (2016)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer (2015)

    Google Scholar 

  25. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D u-net: learning dense volumetric segmentation from sparse annotation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 424–432. Springer (2016)

    Google Scholar 

  26. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  27. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  29. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  30. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: Real-time instance segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9157–9166 (2019)

    Google Scholar 

  31. Chen, X., Girshick, R., He, K., Dollár, P.: TensorMask: a foundation for dense object segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2061–2069 (2019)

    Google Scholar 

  32. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)

    Google Scholar 

  33. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  34. Chen, H., Qi, X., Yu, L., Heng, P.A.: Dcan: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  35. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  36. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  37. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon, D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  38. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  39. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M.: Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013)

  40. Hochreiter, S., Schmidhuber, J.: LSTM can solve hard long time lag problems. In: Advances in Neural Information Processing Systems, pp. 473–479 (1997)

    Google Scholar 

  41. Hausknecht, M., Stone, P.: Deep recurrent q-learning for partially observable MDPs. In: 2015 AAAI Fall Symposium Series (2015)

    Google Scholar 

  42. Schulze, C., Schulze, M.: ViZDoom: DRQN with prioritized experience replay, double-q learning and snapshot ensembling. In: Proceedings of SAI Intelligent Systems Conference, pp. 1–17. Springer (2018)

    Google Scholar 

  43. Kempka, M., Wydmuch, M., Runc, G., Toczek, J., Jaśkowski, W.: ViZDoom: a doom-based AI research platform for visual reinforcement learning. In: 2016 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8. IEEE (2016)

    Google Scholar 

  44. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Google Scholar 

  45. Jie, Z., Liang, X., Feng, J., Jin, X., Lu, W., Yan, S.: Tree-structured reinforcement learning for sequential object localization. In: Advances in Neural Information Processing Systems, pp. 127–135 (2016)

    Google Scholar 

  46. Liu, F., Li, S., Zhang, L., Zhou, C., Ye, R., Wang, Y., Lu, J.: 3DCNN-DQN-RNN: a deep reinforcement learning framework for semantic parsing of large-scale 3d point clouds. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5678–5687 (2017)

    Google Scholar 

  47. Chen, C., Li, H.Y., Dharmawan, A.G., Ismail, K., Liu, X., Tan, U.X.: Robot control in human environment using deep reinforcement learning and convolutional neural network. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1121–1126. IEEE (2019)

    Google Scholar 

  48. Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T.: Learning synergies between pushing and grasping with self-supervised deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4238–4245. IEEE (2018)

    Google Scholar 

  49. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40 (2017)

    Google Scholar 

  50. Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4367–4375 (2018)

    Google Scholar 

  51. Loo, Y., Lim, S.K., Roig, G., Cheung, N.M.: Few-shot regression via learned basis functions (2019)

    Google Scholar 

  52. Wang, X., Huang, T.E., Darrell, T., Gonzalez, J.E., Yu, F.: Frustratingly simple few-shot object detection. arXiv preprint arXiv:2003.06957 (2020)

  53. Fan, Q., Zhuo, W., Tang, C.K., Tai, Y.W.: Few-shot object detection with attention-RPN and multi-relation detector. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4013–4022 (2020)

    Google Scholar 

  54. Yang, Z., Wang, Y., Chen, X., Liu, J., Qiao, Y.: Context-transformer: tackling object confusion for few-shot detection. In: AAAI, pp. 12,653–12,660 (2020)

    Google Scholar 

  55. Hsieh, T.I., Lo, Y.C., Chen, H.T., Liu, T.L.: One-shot object detection with co-attention and co-excitation. In: Advances in Neural Information Processing Systems, pp. 2725–2734 (2019)

    Google Scholar 

  56. Xie, E., Sun, P., Song, X., Wang, W., Liu, X., Liang, D., Shen, C., Luo, P.: Polarmask: single shot instance segmentation with polar representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12,193–12,202 (2020)

    Google Scholar 

  57. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: SG-ONE: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. (2020)

    Google Scholar 

  58. Park, Y.H., Seo, J., Moon, J.: Cafenet: class-agnostic few-shot edge detection network. arXiv preprint arXiv:2003.08235 (2020)

  59. Zhao, Y., Price, B., Cohen, S., Gurari, D.: Objectness-aware one-shot semantic segmentation. arXiv preprint arXiv:2004.02945 (2020)

  60. Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hofmann, K., Whiteson, S.: Varibad: a very good method for Bayes-adaptive deep RL via meta-learning. arXiv preprint arXiv:1910.08348 (2019)

  61. Xu, K., Ratner, E., Dragan, A., Levine, S., Finn, C.: Few-shot intent inference via meta-inverse reinforcement learning (2018)

    Google Scholar 

  62. Sohn, S., Woo, H., Choi, J., Lee, H.: Meta reinforcement learning with autonomous inference of subtask dependencies. arXiv preprint arXiv:2001.00248 (2020)

  63. Bengio, Y., Deleu, T., Rahaman, N., Ke, R., Lachapelle, S., Bilaniuk, O., Goyal, A., Pal, C.: A meta-transfer objective for learning to disentangle causal mechanisms. arXiv preprint arXiv:1901.10912 (2019)

  64. Huang, S., Elhoseiny, M., Elgammal, A., Yang, D.: Learning hypergraph-regularized attribute predictors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–417 (2015)

    Google Scholar 

  65. Lampert, C.H., Nickisch, H., Harmeling, S.: Attribute-based classification for zero-shot visual object categorization. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 453–465 (2013)

    Article  Google Scholar 

  66. Zhang, Z., Saligrama, V.: Zero-shot learning via semantic similarity embedding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4166–4174 (2015)

    Google Scholar 

  67. Norouzi, M., Mikolov, T., Bengio, S., Singer, Y., Shlens, J., Frome, A., Corrado, G.S., Dean, J.: Zero-shot learning by convex combination of semantic embeddings. arXiv preprint arXiv:1312.5650 (2013)

  68. Changpinyo, S., Chao, W.L., Gong, B., Sha, F.: Synthesized classifiers for zero-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5327–5336 (2016)

    Google Scholar 

  69. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for image classification. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1425–1438 (2015)

    Article  Google Scholar 

  70. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2927–2936 (2015)

    Google Scholar 

  71. Chen, Q.: Neuromorphic learning systems for supervised and unsupervised applications (2016)

    Google Scholar 

  72. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161 (2015)

    Google Scholar 

  73. Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)

  74. Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7278–7286 (2018)

    Google Scholar 

  75. Gao, H., Shou, Z., Zareian, A., Zhang, H., Chang, S.F.: Low-shot learning via covariance-preserving adversarial augmentation networks. In: Advances in Neural Information Processing Systems, pp. 975–985 (2018)

    Google Scholar 

  76. Pahde, F., Puscas, M., Wolff, J., Klein, T., Sebe, N., Nabi, M.: Low-shot learning from imaginary 3D model. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 978–985. IEEE (2019)

    Google Scholar 

  77. Hariharan, B., Girshick, R.: Low-shot visual recognition by shrinking and hallucinating features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3018–3027 (2017)

    Google Scholar 

  78. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  79. Li, Z., Zhou, F., Chen, F., Li, H.: Meta-sgd: Learning to learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017)

  80. Sun, Q., Liu, Y., Chua, T.S., Schiele, B.: Meta-transfer learning for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 403–412 (2019)

    Google Scholar 

  81. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  82. Mukaiyama, K., Sato, I., Sugiyama, M.: LFD-Protonet: prototypical network based on local fisher discriminant analysis for few-shot learning. arXiv preprint arXiv:2006.08306 (2020)

  83. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, pp. 737–744 (1994)

    Google Scholar 

  84. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)

    Google Scholar 

  85. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11(3), (2010)

    Google Scholar 

  86. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  87. Zheng, W.S., Gong, S., Xiang, T.: Transfer re-identification: From person to set-based verification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2650–2657. IEEE (2012)

    Google Scholar 

  88. Hoffer, E., Ailon, N.: Deep metric learning using triplet network. In: International Workshop on Similarity-Based Pattern Recognition, pp. 84–92. Springer (2015)

    Google Scholar 

  89. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: Advances in Neural Information Processing Systems, pp. 3630–3638 (2016)

    Google Scholar 

  90. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1199–1208 (2018)

    Google Scholar 

  91. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  92. Arrieta, A.B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, S., Molina, D., Benjamins, R., et al.: Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  93. Xie, N., Ras, G., van Gerven, M., Doran, D.: Explainable deep learning: a field guide for the uninitiated. arXiv preprint arXiv:2004.14545 (2020)

  94. Rani, P., Liu, C., Sarkar, N., Vanman, E.: An empirical study of machine learning techniques for affect recognition in human-robot interaction. Pattern Anal. Appl. 9(1), 58–69 (2006)

    Article  Google Scholar 

  95. Wang, H.X., Fratiglioni, L., Frisoni, G.B., Viitanen, M., Winblad, B.: Smoking and the Occurence of Alzheimer’s disease: cross-sectional and longitudinal data in a population-based study. Am. J. Epidemiol. 149(7), 640–644 (1999)

    Article  Google Scholar 

  96. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. AI magazine 38(3), 50–57 (2017)

    Article  Google Scholar 

  97. Chouldechova, A.: Fair prediction with disparate impact: a study of bias in recidivism prediction instruments. Big Data 5(2), 153–163 (2017)

    Article  Google Scholar 

  98. Hendricks, L.A., Burns, K., Saenko, K., Darrell, T., Rohrbach, A.: Women also snowboard: overcoming bias in captioning models. In: European Conference on Computer Vision, pp. 793–811. Springer (2018)

    Google Scholar 

  99. Bennetot, A., Laurent, J.L., Chatila, R., Díaz-Rodríguez, N.: Towards explainable neural-symbolic visual reasoning. In: NeSy Workshop IJCAI (2019)

    Google Scholar 

  100. Chander, A., Srinivasan, R., Chelian, S., Wang, J., Uchino, K.: Working with beliefs: Ai transparency in the enterprise. In: IUI Workshops (2018)

    Google Scholar 

  101. Tickle, A.B., Andrews, R., Golea, M., Diederich, J.: The truth will come to light: directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans. Neural Networks 9(6), 1057–1068 (1998)

    Article  Google Scholar 

  102. Kim, B., Glassman, E., Johnson, B., Shah, J.: iBCM: Interactive Bayesian case model empowering humans via intuitive interaction (2015)

    Google Scholar 

  103. Ribeiro, M.T., Singh, S., Guestrin, C.: “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  104. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  105. Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  106. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial examples: attacks and defenses for deep learning. IEEE Trans. Neural Networks Learn. Syst. 30(9), 2805–2824 (2019)

    Article  MathSciNet  Google Scholar 

  107. Law, J.: Robust statistics-the approach based on influence functions. J. Roy. Stat. Soc. Ser. D (The Statistician) 35(5), 565–566 (1986)

    Google Scholar 

  108. Basu, S., Kumbier, K., Brown, J.B., Yu, B.: Iterative random forests to discover predictive and stable high-order interactions. Proc. Natl. Acad. Sci. 115(8), 1943–1948 (2018)

    Article  MathSciNet  Google Scholar 

  109. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2528–2535. IEEE (2010)

    Google Scholar 

  110. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp. 618–626 (2017)

    Google Scholar 

  111. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  112. Blunsom, P., Cho, K., Cohen, S.B., Grefenstette, E., Hermann, K.M., Rimell, L., Weston, J., Yih, W.T.: Proceedings of the 1st Workshop on Representation Learning for NLP. In: Proceedings of the 1st Workshop on Representation Learning for NLP (2016)

    Google Scholar 

  113. Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: “ what is relevant in a text document?”: an interpretable machine learning approach. PLoS ONE 12(8), e0181,142 (2017)

    Google Scholar 

  114. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

  115. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. arXiv preprint arXiv:1702.04595 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Čík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Čík, I. et al. (2021). Application and Perspectives of Convolutional Neural Networks in Digital Intelligence. In: Paralič, J., Sinčák, P., Hartono, P., Mařík, V. (eds) Towards Digital Intelligence Society. DISA 2020. Advances in Intelligent Systems and Computing, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-63872-6_2

Download citation

Publish with us

Policies and ethics