Skip to main content

Stress Fractures

  • Chapter
  • First Online:
Fracture Sonography
  • 432 Accesses

Abstract

1.1 Rationale of application

X-ray-free direct representation of the connective tissue structures over a suspected fracture for the detection of direct or indirect signs of a stress fracture.

1.2 Level of evidence

III.

1.3 Indication

For the representation of the bone surface and the connective tissue structures above the bone if a stress fracture is suspected, especially if no diagnosis is possible on the X-ray image.

1.4 Age of the patient

Every age.

1.5 Contraindication

No.

1.6 Examination

Visualisation of the area suspected of fracture with high-resolution transducers (12–18 MHz), the transducer is placed at the point of greatest pain and always parallel to the axis of the bone. It is important to ensure that the cortical reflex is displayed most sharply. The transducer must be guided around the bone in parallel so that a suspected fracture cannot be overlooked if it is oblique. In addition to a cortical disruption, a periosteal thickening, lymphedema in the subcutaneous tissue and an inflammatory reaction in the power doppler are also to be found. If the cortical disruption is negative, the examination must be repeated after 7 days.

1.7 Indications for additional X-ray diagnostics

When detecting a stress fracture, a second imaging procedure should be used, preferably magnetic resonance imaging as the “golden standard” (Ammann et al. 2014) or X-ray to exclude other types of pathological fractures.

1.8 Pitfalls

Intraspongious stress fractures without an interruption of the cortex can be evidenced by ultrasound, here a change in the sound of the cortex with the extinction of the reverberation artifacts is to be sought (see Fig. 23.3).

1.9 Red flags

Pain in the femoral neck area with a suspected stress fracture should prompt be examined by magnetic resonance imaging because a dislocation is to be feared and ultrasound cannot reliably show the suspected fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wright AA, Hegedus EJ, Lenchik L, Kuhn KJ, Santiago L, Smoliga JM. Diagnostic accuracy of various imaging modalities for suspected lower extremity stress fractures: a systematic review with evidence-based recommendations for clinical practice. Am J Sports Med. 2016;44(1):255–63. doi:0363546515574066 [pii]. https://doi.org/10.1177/0363546515574066.

    Article  PubMed  Google Scholar 

  2. Liong SY, Whitehouse RW. Lower extremity and pelvic stress fractures in athletes. Br J Radiol. 2012;85(1016):1148–56. doi:85/1016/1148 [pii]. https://doi.org/10.1259/bjr/78510315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breithaupt MB. Zur Pathologie des menschlichen Fußes. Med Zeit. 1855;24:9.

    Google Scholar 

  4. Wolff R. Stressfraktur—Ermüdungsbruch—Stressreaktion. Dtsch Z Sportmed. 2001;52(4):5.

    Google Scholar 

  5. Mauch F, Kraus M, Gulke J, Ammann B. [MRI in musculoskeletal imaging: possibilities and limitations]. Unfallchirurg. 2014;117(3):227–234. https://doi.org/10.1007/s00113-013-2402-5.

  6. Aksay E, Yesilaras M, Kilic TY, Tur FC, Sever M, Kaya A. Sensitivity and specificity of bedside ultrasonography in the diagnosis of fractures of the fifth metacarpal. Emerg Med J. 2015;32(3):221–5. doi:emermed-2013-202971 [pii]. https://doi.org/10.1136/emermed-2013-202971.

    Article  PubMed  Google Scholar 

  7. Duckham RL, Brooke-Wavell K, Summers GD, Cameron N, Peirce N. Stress fracture injury in female endurance athletes in the United Kingdom: a 12-month prospective study. Scand J Med Sci Sports. 2015;25(6):854–9. https://doi.org/10.1111/sms.12453.

    Article  CAS  PubMed  Google Scholar 

  8. Meardon SA, Willson JD, Gries SR, Kernozek TW, Derrick TR. Bone stress in runners with tibial stress fracture. Clin Biomech (Bristol, Avon). 2015;30(9):895–902. doi:S0268-0033(15)00209-0 [pii]. https://doi.org/10.1016/j.clinbiomech.2015.07.012.

    Article  Google Scholar 

  9. Reinking MF, Austin TM, Bennett J, Hayes AM, Mitchell WA. Lower extremity overuse bone injury risk factors in collegiate athletes: a pilot study. Int J Sports Phys Ther. 2015;10(2):155–67.

    PubMed  PubMed Central  Google Scholar 

  10. Saglam F, Gulabi D, Baysal O, Bekler HI, Tasdemir Z, Elmali N. Chronic wrist pain in a goalkeeper; bilateral scaphoid stress fracture: a case report. Int J Surg Case Rep. 2015;7C:20–2. doi:S2210-2612(14)00460-X [pii]. https://doi.org/10.1016/j.ijscr.2014.12.025.

    Article  PubMed  Google Scholar 

  11. Tang T, Ebacher V, Cripton P, Guy P, McKay H, Wang R. Shear deformation and fracture of human cortical bone. Bone. 2015;71:25–35. doi:S8756-3282(14)00366-4 [pii]. https://doi.org/10.1016/j.bone.2014.10.001.

    Article  PubMed  Google Scholar 

  12. King A, Johnson G, Engelberg D, Ludwig W, Marrow J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science. 2008;321(5887):382–5. doi:321/5887/382 [pii]. https://doi.org/10.1126/science.1156211.

    Article  CAS  PubMed  Google Scholar 

  13. Kurth A, Lange U. Fachwissen Osteologie. München: Elsevier; 2018.

    Google Scholar 

  14. Ammann B, Mauch F, Schmitz B, Kraus M. [Weightings and sequences in magnetic resonance imaging in orthopedic surgery]. Unfallchirurg. 2014;117(3):197–198, 200–195. https://doi.org/10.1007/s00113-013-2399-9.

  15. Khadabadi NA, Patil KS. Simultaneous bilateral femoral neck stress fracture in a young stone Mason. Case Rep Orthop. 2015;2015:306246. https://doi.org/10.1155/2015/306246.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ricciardi L, Perissinotto A, Dabala M. External callus development on ultrasound and its mechanical correlation. Ital J Orthop Traumatol. 1992;18:223–9.

    CAS  PubMed  Google Scholar 

  17. Ricciardi L, Perissinotto A, Dabala M. Mechanical monitoring of fracture healing using ultrasound imaging. Clin Orthop. 1993;293:71–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Tesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tesch, C. (2021). Stress Fractures. In: Ackermann, O. (eds) Fracture Sonography. Springer, Cham. https://doi.org/10.1007/978-3-030-63839-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63839-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63838-2

  • Online ISBN: 978-3-030-63839-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics