Skip to main content

Organics on the Rocks: A Cosmic Origin for the Seeds of Life

  • Conference paper
  • First Online:
The Search for ExtraTerrestrial Intelligence

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 260))

  • 256 Accesses

Abstract

Interstellar gas phase chemistry is effective in producing a range of simple molecules, including many organic molecules. Such a chemical complexity can be achieved through the processing of mixed ices on the surfaces of dust grains. These complex organics are of great interest to astrobiology, but are simpler than the molecules involved in biological processes. When ice-coated dust grains aggregate together in protoplanetary discs, and eventually in planetesimals, a large volume fraction remains unoccupied. The products of ice processing are retained within these cavities and subjected the repeated processing and additions of metals from the underlying grains. The nature of the chemistry in these cavities is in principle similar to the famous Miller-Urey experiment in which a variety of amino acids was formed. Perhaps clusters of dust grains could be the mechanism of forming and transporting essential molecules to planet Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.S. Boyajian, D.M. LaCourse, S.A. Rappaport, et al., Planet Hunters IX. KIC 8462852—where’s the flux? MNRAS 4, 3988–4004 (2016). https://doi.org/10.1093/mnras/stw218

  2. F.J. Dyson, Search for artificial stellar sources of infrared radiation. Science 131, 1667–1668 (1960). https://doi.org/10.1126/science.131.3414.1667

  3. P. Woods, Melting moons make Tabby’s star murky. Nat. Astron. 3, 961–961 (2019). https://doi.org/10.1038/s41550-019-0946-1

  4. B.A. McGuire, 2018 census of interstellar, circumstellar, extragalactic, protoplanetary disk, and exoplanetary molecules. ApJ Supp. Ser. 239, 17 (2018). https://doi.org/10.3847/1538-4365/aae5d2

    Article  ADS  Google Scholar 

  5. A.C. Cheung, D.M. Rank, C.H. Townes, D.D. Thornton, W.J. Welch, Detection of water in interstellar regions by its microwave radiation. Nature 221, 626–628 (1969). https://doi.org/10.1038/221626a0

  6. F.C. Gillett, W.J. Forrest, Spectra of the Becklin-Neugebauer point source and the Kleinmann-Low nebula from 2.8 to 13.5 microns. ApJ 179, 483 (1973). https://doi.org/10.1086/151888

  7. R.T. Garrod, E. Herbst, Formation of methyl formate and other organic species in the warm-up phase of hot molecular cores. A&A 457, 927–936 (2006). https://doi.org/10.1051/0004-6361:20065560

    Article  ADS  Google Scholar 

  8. C. Cecchi-Pestellini, S. Aiello, Cosmic ray induced photons in dense interstellar clouds. MNRAS 258, 125–133 (1992). https://doi.org/10.1093/mnras/258.1.125

  9. A. Legér, M. Jura, A. Omont, Desorption from interstellar grains. A&A 144, 147–160 (1985)

    Google Scholar 

  10. M.R.S. McCoustra, J.D. Thrower, Exciton-promoted desorption from solid water surfaces, in K. Wandelt (ed.) Encyclopedia of Interfacial Chemistry (Elsevier, 2018), pp. 383–395. https://doi.org/10.1016/B978-0-12-409547-2.13910-1

  11. A. Belloche, R.T. Garrod, H.S.P. Müller, K.M. Menten, Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science 345, 1584–1587 (2014). https://doi.org/10.1126/science.1256678

  12. B.A. McGuire, P.B. Carroll, R.A. Loomis, I.A. Finneran, P.R. Jewell, A.J. Remijan, G.A. Blake, Discovery of the interstellar chiral molecule propylene oxide (CH\(_3\)CHCH\(_2\)O). Science 352, 1449–1452 (2016). https://doi.org/10.1126/science.aae0328

  13. L.E. Snyder, D. Buhl, Interstellar isocyanic acid. ApJ 177, 619 (1972). https://doi.org/10.1086/151739

    Article  ADS  Google Scholar 

  14. R.H. Rubin, G.W.J. Swenson, R.C. Benson, H.L. Tigelaar, W.H. Flygare, Microwave detection of interstellar formamide. ApJ Lett. 169, L39 (1971). https://doi.org/10.1086/180810

  15. A.C. Cheung, D.M. Rank, C.H. Townes, D.D. Thornton, W.J. Welch, Detection of NH\(_3\) Molecules in the interstellar medium by their microwave emission. Phys. Rev. Lett. 21, 1701–1705 (1968). https://doi.org/10.1103/PhysRevLett.21.1701

  16. K.I. Öberg, V.V. Guzmn, K. Furuya, C. Qi, Y. Aikawa, S.M. Andrews, R.A. Loomis, D.J. Wilner, The comet-like composition of a protoplanetary disk as revealed by complex cyanides. Nature 520, 198–201 (2015). https://doi.org/10.1038/nature14276

  17. C. Walsh, R.A. Loomis, K.I. Öberg et al., First detection of gas-phase methanol in a protoplanetary disk. ApJ Lett. 823, L10 (2016). https://doi.org/10.3847/2041-8205/823/1/L10

    Article  ADS  Google Scholar 

  18. L. Podio, F. Bacciotti, D. Fedele et al., Organic molecules in the protoplanetary disk of DG Tauri revealed by ALMA. A&A 623, L6 (2019). https://doi.org/10.1051/0004-6361/201834475

    Article  ADS  Google Scholar 

  19. A.S. Burton, J.C. Stern, J.E. Elsila, D.P. Glavin, J.P. Dworkin, Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459–5472 (2012). https://doi.org/10.1039/c2cs35109a

  20. L. Le Roy, K. Altwegg, H. Balsiger et al., Inventory of the volatiles on comet 67P/Churyumov-Gerasimenko from Rosetta/ROSINA. A&A 583, A1 (2015). https://doi.org/10.1051/0004-6361/201526450

    Article  ADS  Google Scholar 

  21. J.R. Cronin, S. Pizzarello, Enantiomeric excesses in meteoritic amino acids. Science 275, 951–955 (1997). https://doi.org/10.1126/science.275.5302.951

  22. C. Cooper, A.C. Rios, Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites. Proc. Natl. Acad. Sci. U.S.A. 113, E3322–E3331 (2016). https://doi.org/10.1073/pnas.1603030113

    Article  ADS  Google Scholar 

  23. J.-E. Lee, S. Lee, G. Baek, et al., The ice composition in the disk around V883 Ori revealed by its stellar outburst. Nat. Astron. 3, 314–319 (2019). https://doi.org/10.1038/s41550-018-0680-0

  24. W.W. Duley, Chemistry in grain aggregates: a source of complex molecules? MNRAS 319, 791–796 (2000). https://doi.org/10.1046/j.1365-8711.2000.03820.x

  25. S.L. Miller, A production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953). https://doi.org/10.1126/science.117.3046.528

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Cecchi-Pestellini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cecchi-Pestellini, C. (2021). Organics on the Rocks: A Cosmic Origin for the Seeds of Life. In: Montebugnoli, S., Melis, A., Antonietti, N. (eds) The Search for ExtraTerrestrial Intelligence. Springer Proceedings in Physics, vol 260. Springer, Cham. https://doi.org/10.1007/978-3-030-63806-1_5

Download citation

Publish with us

Policies and ethics