Skip to main content

In-Bed Human Pose Classification Using Sparse Inertial Signals

  • Conference paper
  • First Online:
Artificial Intelligence XXXVII (SGAI 2020)

Abstract

Recent studies on sleep reveal its impact on the well-being of humans. Monitoring of in-bed body postures can provide clinicians with early indicators of a wide range of musculoskeletal disorders. Current work on sleep pose classification is directed at non-wearable technologies, with issues associated to limited body observability and concerns over personal privacy; or on wearable sensors that consider only a small number of sleep poses and thus have limited generalisation. This paper proposes a novel method for wearable-based human pose classification capable of classifying twelve benchmark sleeping poses. To overcome the scarcity of labelled inertial data, a new data augmentation technique is proposed to generate realistic synthetic datasets emulating real-world conditions. An Error-Correcting Output Codes model is used to employ a multi-class classifier based on an ensemble of Support Vector Machine based classifiers. For system validation, a computer graphics simulator was used to accurately emulate data recording of in-bed body postures, leveraging on a standard articulated body file format commonly used by commercial motion-capture technologies. Experiments show superior performance (as high as 100% classification accuracy), and resilience to noise contamination beyond what could be encountered in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cloud.blender.org/p/animation-fundamentals/5d69ab4dea6789db11ee65d1.

References

  1. Deen, M.J.: Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquit. Comput. 19(3–4), 573–599 (2015). https://doi.org/10.1007/s00779-015-0856-x

    Article  Google Scholar 

  2. Fallmann, S., Van Veen, R., Chen, L., Walker, D., Chen, F., Pan, C.: Wearable accelerometer based extended sleep position recognition. In: IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6 (2017). https://doi.org/10.1109/HealthCom.2017.8210806

  3. Ibáñez, V., Silva, J., Cauli, O.: A survey on sleep questionnaires and diaries. Sleep Med. 42, 90–96 (2018). https://doi.org/10.1016/j.sleep.2017.08.026

    Article  Google Scholar 

  4. Nojiri, A., Okumura, C., Ito, Y.: Sleep posture affects sleep parameters differently in young and senior Japanese as assessed by actigraphy. Health 6(21), 2934–2944 (2014). https://doi.org/10.4236/health.2014.621332

    Article  Google Scholar 

  5. Pinna, G.D., et al.: Differential impact of body position on the severity of disordered breathing in heart failure patients with obstructive vs. central sleep apnoea. Eur. J. Heart Fail. 17(12), 1302–1309 (2015). https://doi.org/10.1002/ejhf.410

    Article  Google Scholar 

  6. Lara, Ó.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013). https://doi.org/10.1109/SURV.2012.110112.00192

    Article  Google Scholar 

  7. Lopez-Nava, I.H., Angelica, M.M.: Wearable inertial sensors for human motion analysis: a review. IEEE Sens. J. 16(22), 7821–7834 (2016). https://doi.org/10.1109/JSEN.2016.2609392

    Article  Google Scholar 

  8. Alaziz, M., Jia, Z., Howard, R., Lin, X., Zhang, Y.: In-bed body motion detection and classification system. ACM Trans. Sens. Netw. 16(2), 131–1326 (2020). https://doi.org/10.1145/3372023

    Article  Google Scholar 

  9. Akbarian, S., Delfi, G., Zhu, K., Yadollahi, A., Taati, B.: Automated non-contact detection of head and body positions during sleep. IEEE Access 7, 72826–72834 (2019). https://doi.org/10.1109/ACCESS.2019.2920025

    Article  Google Scholar 

  10. Bartlett, H.L., Goldfarb, M.: A phase variable approach for IMU-based locomotion activity recognition. IEEE Trans. Biomed. Eng. 65(6), 1330–1338 (2018). https://doi.org/10.1109/TBME.2017.2750139

    Article  Google Scholar 

  11. Preece, S.J., Goulermas, J.Y., Kenney, L.P., Howard, D.: A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Trans. Biomed. Eng. 56(3), 871–879 (2009). https://doi.org/10.1109/TBME.2008.2006190

    Article  Google Scholar 

  12. Panahandeh, G., Mohammadiha, N., Leijon, A., Handel, P.: Continuous hidden Markov model for pedestrian activity classification and gait analysis. IEEE Trans. Instrum. Meas. 62(5), 1073–1083 (2013). https://doi.org/10.1109/TIM.2012.2236792

    Article  Google Scholar 

  13. Wu, D., Zhang, H., Niu, C., Ren, J., Zhao, W.: Inertial sensor based human activity recognition via reduced kernel PCA. In: Fortino, G., Wang, Z. (eds.) Advances in Body Area Networks I. IT, pp. 447–456. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02819-0_34

    Chapter  Google Scholar 

  14. Kasebzadeh, P., Hendeby, G., Fritsche, C., Gunnarsson, F., Gustafsson, F.: IMU dataset for motion and device mode classification. In: International Conference on Indoor Positioning and Indoor Navigation (IPIN) (2017). https://doi.org/10.1109/IPIN.2017.8115956

  15. Zimmermann, T., Taetz, B., Bleser, G.: IMU-to-segment assignment and orientation alignment for the lower body using deep learning. Sensors 18(302), 1–35 (2018). https://doi.org/10.3390/s18010302

    Article  Google Scholar 

  16. Eyobu, O.S., Han, D.S.: Feature representation and data augmentation for human activity classification based on wearable IMU sensor data using a deep LSTM neural network. Sensors 18(9), 1–26 (2018). https://doi.org/10.3390/s18092892

    Article  Google Scholar 

  17. Ohashi, H., Al-Naser, M., Ahmed, S., Nakamura, K., Sato, T., Dengel, A.: Attributes’ importance for zero-shot pose-classification based on wearable sensors. Sensors 18(2485), 1–17 (2018). https://doi.org/10.3390/s18082485

    Article  Google Scholar 

  18. Zhang, Z., Yang, G.Z.: Monitoring cardio-respiratory and posture movements during sleep: what can be achieved by a single motion sensor. In: IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–6 (2015). https://doi.org/10.1109/BSN.2015.7299409

  19. Cary, D., Briffa, K., McKenna, L.: Identifying relationships between sleep posture and non-specific spinal symptoms in adults: a scoping review. BMJ Open 9(6), 1–10 (2019). https://doi.org/10.1136/bmjopen-2018-027633

    Article  Google Scholar 

  20. Pons-Moll, G., Rosenhahn, B.: Model-based pose estimation. In: Moeslund, T., Hilton, A., Krüger, V., Sigal, L., et al. (eds.) Visual Analysis of Humans, pp. 139–170. Springer, London (2011). https://doi.org/10.1007/978-0-85729-997-0_9

    Chapter  Google Scholar 

  21. Garg, R., et al.: Wrist kinematic coupling and performance during functional tasks: effects of constrained motion. J. Hand Surg. 39(4), 634–642 (2014). https://doi.org/10.1016/j.jhsa.2013.12.031

    Article  Google Scholar 

  22. Nam, H.S., Lee, W.H., Seo, H.G., Kim, Y.J., Bang, M.S., Kim, S.: Inertial measurement unit based upper extremity motion characterization for action research arm test and activities of daily living. Sensors 19(8), 1–10 (2019). https://doi.org/10.3390/s19081782

    Article  Google Scholar 

  23. Wu, G., et al.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part II: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.042

    Article  Google Scholar 

  24. Rashid, K.M., Louis, J.: Times-series data augmentation and deep learning for construction equipment activity recognition. Adv. Eng. Inform. 42(100944), 1–12 (2019). https://doi.org/10.1016/j.aei.2019.100944

    Article  Google Scholar 

  25. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004). https://doi.org/10.1023/B:STCO.0000035301.49549.88

    Article  MathSciNet  Google Scholar 

  26. Abe, S.: Two-class support vector machines. In: Singh, S. (ed.) Support Vector Machines for Pattern Classification. Advances in Pattern Recognition, pp. 21–106. Springer, London (2010). https://doi.org/10.1007/978-1-84996-098-4_2

    Chapter  MATH  Google Scholar 

  27. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  28. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000). https://doi.org/10.1162/15324430152733133

    Article  MathSciNet  MATH  Google Scholar 

  29. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995). https://doi.org/10.1613/jair.105

    Article  MATH  Google Scholar 

  30. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the human out of the loop: a review of Bayesian optimization. Proc. IEEE 104(1), 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Lyndon Mason and Prof Rahul Savani for their input in the definition of the clinical problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Elnaggar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elnaggar, O., Coenen, F., Paoletti, P. (2020). In-Bed Human Pose Classification Using Sparse Inertial Signals. In: Bramer, M., Ellis, R. (eds) Artificial Intelligence XXXVII. SGAI 2020. Lecture Notes in Computer Science(), vol 12498. Springer, Cham. https://doi.org/10.1007/978-3-030-63799-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63799-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63798-9

  • Online ISBN: 978-3-030-63799-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics