Skip to main content

Partial Orders, Residuation, and First-Order Linear Logic

  • Chapter
  • First Online:
Natural Language Processing in Artificial Intelligence—NLPinAI 2020

Part of the book series: Studies in Computational Intelligence ((SCI,volume 939))

Abstract

We will investigate proof-theoretic and linguistic aspects of first-order linear logic. We will show that adding partial order constraints in such a way that each sequent defines a unique linear order on the antecedent formulas of a sequent allows us to define many useful logical operators. In addition, the partial order constraints improve the efficiency of proof search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To show this in full detail would require us to do the simple but tedious job of proving that this definition satisfies the monotonicity and Application/Co-Application principles of Table 2.

  2. 2.

    A more elegant solution for ensuring confluence would replace the right-hand side of the \( p \) and \( u \) contractions by the left-hand side of the \( c \) contraction.

  3. 3.

    In the literature on finite state automata it is common to refer to sequences of symbols produced by such an automaton as “words”. However, we reserve “words” to refer to elements in the lexicon of a type-logical grammar and exclusively use “string” for a sequence of symbols produced by a finite state automaton.

  4. 4.

    A closed form solution for this recurrence is the following [26].

    $$ p[n] = \left\lceil \frac{2(2^n -1)}{3} \right\rceil $$

    .

  5. 5.

    This analysis also makes an unexpected empirical claim: the treatment of parasitic gapping in type-logical grammars using the linear logic exponential ‘!’ would require the exponential to have scope over the quantified variable representing the empty string. We therefore need to claim that parasitic gapping can only happen with atomic formulas.

References

  1. Areces, C., Bernardi, R., Moortgat, M.: Galois connections in categorial type logic. Electron. Notes Theor. Comput. Sci. 53, 3–20 (2004). https://doi.org/10.1016/S1571-0661(05)82570-8

  2. Bellin, G., van de Wiele, J.: Empires and kingdoms in MLL. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 249–270. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  3. Bernardi, R., Moortgat, M.: Continuation semantics for the Lambek–Grishin calculus. Inf. Comput. 208(5), 397–416 (2010). https://doi.org/10.1016/j.ic.2009.11.005

  4. Coecke, B., Grefenstette, E., Sadrzadeh, M.: Lambek vs. Lambek: functorial vector space semantics and string diagrams for Lambek calculus. Ann. Pure Appl. Log. 164(11), 1079–1100 (2013). https://doi.org/10.1016/j.apal.2013.05.009

  5. Danos, V.: La logique linéaire appliquée à l’étude de divers processus de normalisation (principalement du \(\lambda \)-calcul). Ph.D. thesis, University of Paris VII (1990)

    Google Scholar 

  6. Danos, V., Regnier, L.: The structure of multiplicatives. Arch. Math. Log. 28, 181–203 (1989). https://doi.org/10.1007/BF01622878

  7. Došen, K.: A brief survey of frames for the Lambek calculus. Z. Math. Log. Grundl. Math. 38, 179–187 (1992). https://doi.org/10.1002/malq.19920380113

  8. Girard, J.Y.: Quantifiers in linear logic II. In: Corsi, G., Sambin, G. (eds.) Nuovi problemi della logica e della filosofia della scienza, CLUEB, Bologna, Italy, vol. II. (1991). Proceedings of the Conference with the Same Name, Viareggio, Italy (1990)

    Google Scholar 

  9. Girard, J.Y.: The Blind Spot: Lectures on Logic. European Mathematical Society, Zürich (2011)

    Google Scholar 

  10. Joshi, A., Schabes, Y.: Tree-adjoining grammars. In: Rosenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages 3: Beyond Words, pp. 69–123. Springer, New York (1997)

    Chapter  Google Scholar 

  11. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Cognitive Technologies. Springer, Berlin (2010)

    Google Scholar 

  12. Kubota, Y., Levine, R.: Gapping as like-category coordination. In: Béchet, D., Dikovsky, A. (eds.) Logical Aspects of Computational Linguistics. Lecture Notes in Computer Science, vol. 7351, pp. 135–150. Springer, Nantes (2012). https://doi.org/10.1007/978-3-642-31262-5_9

  13. Kubota, Y., Levine, R.: Type-Logical Syntax. MIT Press, Cambridge (2020)

    Google Scholar 

  14. Kurtonina, N., Moortgat, M.: Structural control. In: Blackburn, P., de Rijke, M. (eds.) Specifying Syntactic Structures, pp. 75–113. CSLI, Stanford (1997)

    Google Scholar 

  15. Lambek, J.: The mathematics of sentence structure. Am. Math. Mon. 65, 154–170 (1958). https://doi.org/10.1080/00029890.1958.11989160

  16. Lambek, J.: Categorial and categorical grammars. In: Oehrle, R.T., Bach, E., Wheeler, D. (eds.) Categorial Grammars and Natural Language Structures. Studies in Linguistics and Philosophy, vol. 32, pp. 297–317. Reidel, Dordrecht (1988)

    Google Scholar 

  17. Lincoln, P.: Deciding provability of linear logic formulas. In: Girard, J.Y., Lafont, Y., Regnier, L. (eds.) Advances in Linear Logic, pp. 109–122. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  18. Lincoln, P., Shankar, N.: Proof search in first-order linear logic and other cut-free sequent calculi. In: Proceedings of Logic in Computer Science (LICS’94), pp. 282–291. IEEE Computer Society Press (1994)

    Google Scholar 

  19. Montague, R.: The proper treatment of quantification in ordinary English. In: Thomason, R. (ed.) Formal Philosophy. Selected Papers of Richard Montague. Yale University Press, New Haven (1974)

    Google Scholar 

  20. Moortgat, M.: Multimodal linguistic inference. J. Log. Lang. Inf. 5(3–4), 349–385 (1996). https://doi.org/10.1007/BF00159344

  21. Moot, R.: Extended Lambek calculi and first-order linear logic. In: Casadio, C., Coecke, B., Moortgat, M., Scott, P. (eds.) Categories and Types in Logic, Language, and Physics: Essays dedicated to Jim Lambek on the Occasion of this 90th Birthday. Lecture Notes in Artificial Intelligence, vol. 8222, pp. 297–330. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-54789-8_17

  22. Moot, R., Piazza, M.: Linguistic applications of first order multiplicative linear logic. J. Log. Lang. Inf. 10(2), 211–232 (2001). https://doi.org/10.1023/A:1008399708659

  23. Morrill, G., Valentin, O., Fadda, M.: The displacement calculus. J. Log. Lang. Inf. 20(1), 1–48 (2011). https://doi.org/10.1007/s10849-010-9129-2

  24. Oehrle, R.T.: Term-labeled categorial type systems. Linguist. Philos. 17(6), 633–678 (1994). https://doi.org/10.1007/BF00985321

  25. Oehrle, R.T.: Multi-modal type-logical grammar. In: Borsley, R., Börjars, K. (eds.) Non-transformational Syntax: Formal and Explicit Models of Grammar, pp. 225–267. Wiley-Blackwell, Hoboken (2011)

    Google Scholar 

  26. OEIS Foundation: On-line encyclopedia of integer sequences (OEIS). http://oeis.org (1964). Accessed 23 Jul 2020

  27. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theor. Comput. Sci. 88, 191–229 (1991). https://doi.org/10.1016/0304-3975(91)90374-B

  28. Wijnholds, G.: Investigations into categorial grammar: symmetric pregroup grammar and displacement calculus. Master’s thesis, Utrecht University (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Moot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Moot, R. (2021). Partial Orders, Residuation, and First-Order Linear Logic. In: Loukanova, R. (eds) Natural Language Processing in Artificial Intelligence—NLPinAI 2020. Studies in Computational Intelligence, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-030-63787-3_2

Download citation

Publish with us

Policies and ethics