Skip to main content

Photoinduced Electron-Transfer in First-Row Transition Metal Complexes

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, after a brief summary of the basic photophysical and photochemical concepts, the state of the art of the photoinduced electron transfer of the first-row transition metal complexes is discussed. The chapter expands all the first-row transition metals, discussing selected examples that illustrate the main strategies to control and improve photoredox catalysis as well as the challenges associated to the use of 3d metal-based photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balzani, V.: Electron Transfer in Chemistry. Vch Verlagsgesellschaft Mbh (2001)

    Book  Google Scholar 

  2. Ciamician, G.: The photochemistry of the future. Science. 36, 385–394 (1912)

    Article  CAS  PubMed  Google Scholar 

  3. Vlček, A., Kvapilová, H., Towrie, M., Záliš, S.: Electron-transfer acceleration investigated by time resolved infrared spectroscopy. Acc. Chem. Res. 48, 868–876 (2015)

    Article  PubMed  CAS  Google Scholar 

  4. Escudero, D.: Revising intramolecular photoinduced electron transfer (PET) from first-principles. Acc. Chem. Res. 49, 1816–1824 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, W., Gaffney, K.J.: Mechanistic studies of photoinduced spin crossover and electron transfer in inorganic complexes. Acc. Chem. Res. 48, 1140–1148 (2015)

    Article  CAS  PubMed  Google Scholar 

  6. Prier, C.K., Rankic, D.A., MacMillan, D.W.: Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stephenson, C.R.J., Yoon, T.P., MacMillan, D.W.C.: Visible Light Photocatalysis in Organic Chemistry. Wiley, Weinheim (2018)

    Book  Google Scholar 

  8. Reisner, E.: When does organic photoredox catalysis meet artificial photosynthesis? Angew. Chem. Int. Ed. 58, 3656–3657 (2019)

    Article  CAS  Google Scholar 

  9. Dalle, K.E., Warnan, J., Leung, J.J., Reuillard, B., Karmel, I.S., Reisner, E.: Electro-and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Armaroli, N., Balzani, V.: Solar electricity and solar fuels: status and perspectives in the context of the energy transition. Chemistry. 22, 32–57 (2016)

    Article  CAS  PubMed  Google Scholar 

  11. Lewis, N.S., Nocera, D.G.: Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103, 15729–15735 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gray, H.B.: Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009)

    Article  CAS  PubMed  Google Scholar 

  13. Schultz, D.M., Yoon, T.P.: Solar synthesis: prospects in visible light photocatalysis. Science. 343, 1239176 (2014)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Narayanam, J.M., Stephenson, C.R.: Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Corrigan, N., Shanmugam, S., Xu, J., Boyer, C.: Photocatalysis in organic and polymer synthesis. Chem. Soc. Rev. 45, 6165–6212 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M., Grimes, R.: Advanced Inorganic Chemistry, vol. 6. Wiley, New York (1988)

    Google Scholar 

  17. Crabtree, R.H.: The Organometallic Chemistry of the Transition Metals. Wiley, Hoboken, New Jersey (2014)

    Google Scholar 

  18. Jordan, R.B.: Reaction Mechanisms of Inorganic and Organometallic Systems. Oxford University Press, New York, Oxford (2007)

    Google Scholar 

  19. Espenson, J.H.: Chemical Kinetics and Reaction Mechanisms. McGraw-Hill, New York, London (1995)

    Google Scholar 

  20. Balzani, V., Bergamini, G., Campagna, S., Puntoriero, F.: Photochemistry and photophysics of coordination compounds: overview and general concepts. In: Balzani, V., Campagna, S. (eds.) Photochemistry and Photophysics of Coordination Compounds I Top Curr ChemTop Curr Chem. 280, 1–36 (2007)

    Google Scholar 

  21. Vos, J.G., Pryce, M.T.: Photoinduced rearrangements in transition metal compounds. Coord. Chem. Rev. 254, 2519–2532 (2010)

    Article  CAS  Google Scholar 

  22. Roundhill, D.M.: Photochemistry and Photophysics of Metal Complexes. Springer Science & Business Media, Verlag US (2013)

    Google Scholar 

  23. Solomon, E.I., Lever, A.B..P.: Inorganic Electronic Structure and Spectroscopy: Methodology. Wiley, New York (2006)

    Google Scholar 

  24. Horváth, O., Stevenson, K.L.: Charge Transfer Photochemistry of Coordination Compounds. VCH, New York (1993)

    Google Scholar 

  25. Chen, J., Browne, W.R.: Photochemistry of Iron complexes. Coord. Chem. Rev. 374, 15–35 (2018)

    Article  CAS  Google Scholar 

  26. Stephenson, C.R., Yoon, T.P., MacMillan, D.W.: Visible Light Photocatalysis in Organic Chemistry. Wiley, Weinheim (2018)

    Google Scholar 

  27. Romero, N.A., Nicewicz, D.A.: Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Housecroft, C.E., Sharpe, A.G.: Inorganic Chemistry. Pearson, London (2012)

    Google Scholar 

  29. Yoon, S., Kukura, P., Stuart, C.M., Mathies, R.A.: Direct observation of the ultrafast intersystem crossing in Tris(2,2′-Bipyridine)Ruthenium(II) using femtosecond stimulated Raman spectroscopy. Mol. Phys. 104, 1275–1282 (2006)

    Article  CAS  Google Scholar 

  30. Arias-Rotondo, D.M., McCusker, J.K.: The photophysics of photoredox catalysis: a roadmap for catalyst design. Chem. Soc. Rev. 45, 5803–5820 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Balzani, V., Ceroni, P., Juris, A.: Photochemistry and Photophysics: Concepts, Research, Applications. Wiley, Weinheim (2014)

    Google Scholar 

  32. Liu, Y., Persson, P., Sundström, V., Wärnmark, K.: Fe N-Heterocyclic carbene complexes as promising photosensitizers. Acc. Chem. Res. 49, 1477–1485 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Pitre, S.P., McTiernan, C.D., Scaiano, J.C.: Understanding the kinetics and spectroscopy of photoredox catalysis and transition-metal-free alternatives. Acc. Chem. Res. 49, 1320–1330 (2016)

    Article  CAS  PubMed  Google Scholar 

  34. Marcus, R.A.: Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. Int. Ed. 32, 1111–1121 (1993)

    Article  Google Scholar 

  35. Silverstein, T.P.: Marcus theory: thermodynamics can control the kinetics of electron transfer reactions. J. Chem. Educ. 89, 1159–1167 (2012)

    Article  CAS  Google Scholar 

  36. Balzani, V., Bergamini, G., Ceroni, P.: Light: a very peculiar reactant and product. Angew. Chem. Int. Ed. 54, 11320–11337 (2015)

    Article  CAS  Google Scholar 

  37. Tucker, J.W., Stephenson, C.R.J.: Shining light on photoredox catalysis: theory and synthetic applications. J. Org. Chem. 77, 1617–1622 (2012)

    Article  CAS  PubMed  Google Scholar 

  38. Evans, R.C., Douglas, P., Burrow, H.D.: Applied Photochemistry. Springer, Dordrecht (2013)

    Google Scholar 

  39. Beaumier, E.P., Pearce, A.J., See, X.Y., Tonks, I.A.: Modern applications of low-valent early transition metals in synthesis and catalysis. Nat. Rev. Chem. 3, 15–34 (2019)

    Article  PubMed  Google Scholar 

  40. Loukova, G.V., Smirnov, V.A.: Electronic states of Π complexes of D0 early transition metals and energy transfer to unsaturated hydrocarbons. High Energ. Chem. 41, 211–227 (2007)

    Article  CAS  Google Scholar 

  41. Vollhardt, K.P.C.: Cobalt-mediated [2+ 2+ 2]-cycloadditions: a maturing synthetic strategy [new synthetic methods (43)]. Angew. Chem. Int. Ed. 23, 539–556 (1984)

    Article  Google Scholar 

  42. Gandon, V., Aubert, C., Malacria, M.: Recent progress in cobalt-mediated [2 + 2 + 2] cycloaddition reactions. Chem. Commun. (2006). https://doi.org/10.1039/b517696b2209-2217

  43. Ruhl, K.E., Rovis, T.: Visible light-gated cobalt catalysis for a spatially and temporally resolved [2+ 2+ 2] cycloaddition. J. Am. Chem. Soc. 138, 15527–15530 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Ravetz, B.D., Wang, J.Y., Ruhl, K.E., Rovis, T.: Photoinduced ligand-to-metal charge transfer enables photocatalyst-independent light-gated activation of Co(II). ACS Catal. 9, 200–204 (2019)

    Article  CAS  Google Scholar 

  45. Wu, C.-J., Zhong, J.-J., Meng, Q.-Y., Lei, T., Gao, X.-W., Tung, C.-H., Wu, L.-Z.: Cobalt-catalyzed cross-dehydrogenative coupling reaction in water by visible light. Org. Lett. 17, 884–887 (2015)

    Article  CAS  PubMed  Google Scholar 

  46. Weiss, M.E., Kreis, L.M., Lauber, A., Carreira, E.M.: Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011)

    Article  CAS  Google Scholar 

  47. Gazi, S., Hung Ng, W.K., Ganguly, R., Putra Moeljadi, A.M., Hirao, H., Soo, H.S.: Selective photocatalytic C–C bond cleavage under ambient conditions with earth abundant vanadium complexes. Chem. Sci. 6, 7130–7142 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hartl, F., Mahabiersing, T., Le Floch, P., Mathey, F., Ricard, L., Rosa, P., Záliš, S.: Electronic properties of 4,4′,5,5′-tetramethyl-2,2′-biphosphinine (tmbp) in the redox series Fac-[Mn(Br)(Co)3(tmbp)], [Mn(Co)3(tmbp)]2, and [Mn(Co)3(tmbp)]-: crystallographic, spectroelectrochemical, and DFT computational study. Inorg. Chem. 42, 4442–4455 (2003)

    Article  CAS  PubMed  Google Scholar 

  49. Davidson, E.R., Kunze, K.L., Machado, F.B.C., Chakravorty, S.J.: The transition metal-carbonyl bond. Acc. Chem. Res. 26, 628–635 (1993)

    Article  CAS  Google Scholar 

  50. Xie, X., Simon, J.D.: Photodissociation of chromium hexacarbonyl and hexakis(phenyl isocyanide)chromium in tetrahydrofuran. J. Phys. Chem. 93, 4401–4404 (1989)

    Article  CAS  Google Scholar 

  51. Shaw, L.E., Langford, C.H.: Wavelength-dependent photochemistry in Cr(Cnph)6: a study of photosubstitution and photoinduced electron transfer using time-resolved spectroscopy. Inorg. Chem. 39, 541–546 (2000)

    Article  CAS  PubMed  Google Scholar 

  52. Stufkens, D.J.: Spectroscopy, photophysics and photochemistry of zerovalent transition metal Α-diimine complexes. Coord. Chem. Rev. 104, 39–112 (1990)

    Article  CAS  Google Scholar 

  53. Vlček, A.n.: Mechanistic roles of metal-to-ligand charge-transfer excited states in organometallic photochemistry. Coord. Chem. Rev. 177, 219–256 (1998)

    Article  Google Scholar 

  54. Büldt, L.A., Wenger, O.S.: Luminescent complexes made from chelating isocyanide ligands and earth-abundant metals. Dalton Trans. 46, 15175–15177 (2017)

    Article  PubMed  Google Scholar 

  55. Mann, K.R., Gray, H.B., Hammond, G.S.: Excited-state reactivity patterns of hexakisarylisocyano complexes of chromium(0), molybdenum(0), and tungsten(0). J. Am. Chem. Soc. 99, 306–307 (1977)

    Article  CAS  Google Scholar 

  56. Büldt, L.A., Guo, X., Vogel, R., Prescimone, A., Wenger, O.S.: A tris(diisocyanide)chromium(0) complex is a luminescent analog of Fe(2,2′-bipyridine)32+. J. Am. Chem. Soc. 139, 985–992 (2017)

    Article  PubMed  CAS  Google Scholar 

  57. Duchanois, T., Etienne, T., Cebrián, C., Liu, L., Monari, A., Beley, M., Assfeld, X., Haacke, S., Gros, P.C.: An iron-based photosensitizer with extended excited-state lifetime: photophysical and photovoltaic properties. Eur. J. Inorg. Chem. 2015, 2469–2477 (2015)

    Article  CAS  Google Scholar 

  58. Harlang, T.C.B., Liu, Y., Gordivska, O., Fredin, L.A., Ponseca Jr., C.S., Huang, P., Chábera, P., Kjaer, K.S., Mateos, H., Uhlig, J., Lomoth, R., Wallenberg, R., Styring, S., Persson, P., Sundström, V., Wärnmark, K.: Iron sensitizer converts light to electrons with 92% yield. Nat. Chem. 7, 883 (2015)

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Y., Kjær, K.S., Fredin, L.A., Chábera, P., Harlang, T., Canton, S.E., Lidin, S., Zhang, J., Lomoth, R., Bergquist, K.-E., Persson, P., Wärnmark, K., Sundström, V.: A heteroleptic ferrous complex with mesoionic bis(1,2,3-triazol-5-ylidene) ligands: taming the MLCT excited state of iron(II). Chem. Eur. J. 21, 3628–3639 (2015)

    Article  CAS  PubMed  Google Scholar 

  60. Liu, L., Duchanois, T., Etienne, T., Monari, A., Beley, M., Assfeld, X., Haacke, S., Gros, P.C.: A new record excited state 3MLCT lifetime for metalorganic iron(II) complexes. PCCP. 18, 12550–12556 (2016)

    Article  CAS  PubMed  Google Scholar 

  61. Büldt, L.A., Wenger, O.S.: Chromium(0), molybdenum(0), and tungsten(0) isocyanide complexes as luminophores and photosensitizers with long-lived excited states. Angew. Chem. Int. Ed. 56, 5676–5682 (2017)

    Article  CAS  Google Scholar 

  62. Büldt, L.A., Wenger, O.S.: Chromium complexes for luminescence, solar cells, photoredox catalysis, upconversion, and phototriggered no release. Chem. Sci. 8, 7359–7367 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wagenknecht, P.S., Ford, P.C.: Metal centered ligand field excited states: their roles in the design and performance of transition metal based photochemical molecular devices. Coord. Chem. Rev. 255, 591–616 (2011)

    Article  CAS  Google Scholar 

  64. Stevenson, S.M., Shores, M.P., Ferreira, E.M.: Photooxidizing chromium catalysts for promoting radical cation cycloadditions. Angew. Chem. Int. Ed. 54, 6506–6510 (2015)

    Article  CAS  Google Scholar 

  65. Otto, S., Nauth, A.M., Ermilov, E., Scholz, N., Friedrich, A., Resch-Genger, U., Lochbrunner, S., Opatz, T., Heinze, K.: Photo-chromium: sensitizer for visible-light-induced oxidative C−H bond functionalization—electron or energy transfer? ChemPhotoChem. 1, 344–349 (2017)

    Article  CAS  Google Scholar 

  66. Emsley, J.: Nature’s Building Blocks: An Az Guide to the Elements. Oxford University Press, Oxford (2011)

    Google Scholar 

  67. Lever, A.B..P.: Inorganic Electronic Spectroscopy. Elsevier, Amsterdam, Oxford, New York, Tokio (1984)

    Google Scholar 

  68. Pierpont, C.G., Lange, C.W.: https://doi.org/10.1002/9780470166420.ch5

  69. Pierpont, C.G., Lange, C.W.: The chemistry of transition metal complexes containing catechol and semiquinone ligands. Prog. Inorg. Chem. 41, 331–442 (1994)

    CAS  Google Scholar 

  70. Zhang, Y., Petersen, J.L., Milsmann, C.: A luminescent zirconium (IV) complex as a molecular photosensitizer for visible light photoredox catalysis. J. Am. Chem. Soc. 138, 13115–13118 (2016)

    Article  CAS  PubMed  Google Scholar 

  71. Zhu, H., Lin, C.C., Luo, W., Shu, S., Liu, Z., Liu, Y., Kong, J., Ma, E., Cao, Y., Liu, R.-S., Chen, X.: Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 5, 4312 (2014)

    Article  CAS  PubMed  Google Scholar 

  72. Geschwind, S., Kisliuk, P., Klein, M., Remeika, J., Wood, D.: Sharp-line fluorescence, electron paramagnetic resonance, and thermoluminescence of Mn 4+ in Α-Al 2 O 3. Phys. Rev. 126, 1684 (1962)

    Article  CAS  Google Scholar 

  73. Suchocki, A., Allen, J., Powell, R.C., Loiacono, G.: Spectroscopy and four-wave mixing in lisub 4 G E 5 O 12: Mn 4+ crystals. Phys. Rev. B. 36, 6729 (1987)

    Article  CAS  Google Scholar 

  74. Zhou, Z., Zhou, N., Xia, M., Yokoyama, M., Hintzen, H.B.: Research progress and application prospects of transition metal Mn 4+-activated luminescent materials. J. Mater. Chem. C. 4, 9143–9161 (2016)

    Article  CAS  Google Scholar 

  75. Brik, M.G., Srivastava, A.M.: On the optical properties of the Mn4+ ion in solids. J. Lumin. 133, 69–72 (2013)

    Article  CAS  Google Scholar 

  76. Brik, M.G., Srivastava, A.M., Avram, N.M.: Comparative analysis of crystal field effects and optical spectroscopy of six-coordinated Mn4+ ion in the Y2Ti2O7 and Y2Sn2O7 pyrochlores. Opt. Mater. 33, 1671–1676 (2011)

    Article  CAS  Google Scholar 

  77. Chen, D., Zhou, Y., Zhong, J.: A review on Mn4+ activators in solids for warm white light-emitting diodes. RSC Adv. 6, 86285–86296 (2016)

    Article  CAS  Google Scholar 

  78. Baslon, V., Harris, J.P., Reber, C., Colmer, H.E., Jackson, T.A., Forshaw, A.P., Smith, J.M., Kinney, R.A., Telser, J.: Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex. Can. J. Chem. 95, 547–552 (2017)

    Article  CAS  Google Scholar 

  79. Sharma, N., Jung, J., Ohkubo, K., Lee, Y.-M., El-Khouly, M.E., Nam, W., Fukuzumi, S.: Long-lived photoexcited state of a Mn(IV)-oxo complex binding scandium ions that is capable of hydroxylating benzene. J. Am. Chem. Soc. 140, 8405–8409 (2018)

    Article  CAS  PubMed  Google Scholar 

  80. Yeung, K.T., To, W.P., Sun, C., Cheng, G., Ma, C., Tong, G.S.M., Yang, C., Che, C.M.: Luminescent tungsten (Vi) complexes: photophysics and applicability to organic light-emitting diodes and photocatalysis. Angew. Chem. Int. Ed. 56, 133–137 (2017)

    Article  CAS  Google Scholar 

  81. Yeung, K.-T., To, W.-P., Sun, C., Cheng, G., Ma, C., Tong, G.S.M., Yang, C., Che, C.-M.: Luminescent tungsten(Vi) complexes: photophysics and applicability to organic light-emitting diodes and photocatalysis. Angew. Chem. 129, 139–143 (2017)

    Article  Google Scholar 

  82. Wenger, O.S.: Is iron the new ruthenium? Chem. Eur. J. 25, 6043–6052 (2019)

    Article  CAS  PubMed  Google Scholar 

  83. Chergui, M.: Ultrafast photophysics and photochemistry of iron hexacyanides in solution: infrared to X-ray spectroscopic studies. Coord. Chem. Rev. 372, 52–65 (2018)

    Article  CAS  Google Scholar 

  84. McCusker, J.K.: Electronic structure in the transition metal block and its implications for light harvesting. Science. 363, 484–488 (2019)

    Article  CAS  PubMed  Google Scholar 

  85. Bertoni, R., Cammarata, M., Lorenc, M., Matar, S.F., Létard, J.-F., Lemke, H.T., Collet, E.: Ultrafast light-induced spin-state trapping photophysics investigated in Fe(Phen)2(Ncs)2 spin-crossover crystal. Acc. Chem. Res. 48, 774–781 (2015)

    Article  CAS  PubMed  Google Scholar 

  86. Young, E.R., Oldacre, A.: Iron hits the mark. Science. 363, 225–226 (2019)

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, W., Alonso-Mori, R., Bergmann, U., Bressler, C., Chollet, M., Galler, A., Gawelda, W., Hadt, R.G., Hartsock, R.W., Kroll, T., Kjær, K.S., Kubiček, K., Lemke, H.T., Liang, H.W., Meyer, D.A., Nielsen, M.M., Purser, C., Robinson, J.S., Solomon, E.I., Sun, Z., Sokaras, D., van Driel, T.B., Vankó, G., Weng, T.-C., Zhu, D., Gaffney, K.J.: Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature. 509, 345 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chábera, P., Kjaer, K.S., Prakash, O., Honarfar, A., Liu, Y., Fredin, L.A., Harlang, T.C.B., Lidin, S., Uhlig, J., Sundström, V., Lomoth, R., Persson, P., Wärnmark, K.: Feii hexa N-heterocyclic carbene complex with a 528 Ps metal-to-ligand charge-transfer excited-state lifetime. J. Phys. Chem. Lett. 9, 459–463 (2018)

    Article  PubMed  CAS  Google Scholar 

  89. Chábera, P., Liu, Y., Prakash, O., Thyrhaug, E., Nahhas, A.E., Honarfar, A., Essén, S., Fredin, L.A., Harlang, T.C.B., Kjær, K.S., Handrup, K., Ericson, F., Tatsuno, H., Morgan, K., Schnadt, J., Häggström, L., Ericsson, T., Sobkowiak, A., Lidin, S., Huang, P., Styring, S., Uhlig, J., Bendix, J., Lomoth, R., Sundström, V., Persson, P., Wärnmark, K.: A low-spin Fe(III) complex with 100-Ps ligand-to-metal charge transfer photoluminescence. Nature. 543, 695 (2017)

    Article  PubMed  CAS  Google Scholar 

  90. Kjær, K.S., Kaul, N., Prakash, O., Chábera, P., Rosemann, N.W., Honarfar, A., Gordivska, O., Fredin, L.A., Bergquist, K.-E., Häggström, L., Ericsson, T., Lindh, L., Yartsev, A., Styring, S., Huang, P., Uhlig, J., Bendix, J., Strand, D., Sundström, V., Persson, P., Lomoth, R., Wärnmark, K.: Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science. 363, 249–253 (2019)

    Article  PubMed  CAS  Google Scholar 

  91. Kiwi, J., Pulgarin, C., Peringer, P., Grätzel, M.: Beneficial effects of homogeneous photo-Fenton pretreatment upon the biodegradation of anthraquinone sulfonate in waste water treatment. Appl. Catal. B Environ. 3, 85–99 (1993)

    Article  CAS  Google Scholar 

  92. Fenton, H.: Lxxiii.—Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans. 65, 899–910 (1894)

    Article  CAS  Google Scholar 

  93. Pignatello, J.J.: Dark and photoassisted iron (3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944–951 (1992)

    Article  CAS  Google Scholar 

  94. Borer, P., Hug, S.J.: Photo-redox reactions of dicarboxylates and Α-hydroxydicarboxylates at the surface of Fe(III)(hydr)oxides followed with in situ ATR-FTIR spectroscopy. J. Colloid Interface Sci. 416, 44–53 (2014)

    Article  CAS  PubMed  Google Scholar 

  95. Weller, C., Horn, S., Herrmann, H.: Photolysis of Fe(III) carboxylato complexes: Fe(II) quantum yields and reaction mechanisms. J. Photochem. Photobiol. A. 268, 24–36 (2013)

    Article  CAS  Google Scholar 

  96. Šima, J., Makáňová, J.: Photochemistry of Iron (III) complexes. Coord. Chem. Rev. 160, 161–189 (1997)

    Article  Google Scholar 

  97. Pozdnyakov, I., Wu, F., Melnikov, A., Grivin, V., Bazhin, N., Chekalin, S., Plyusnin, V.: Photochemistry of Iron (III)-lactic acid complex in aqueous solutions. Russ. Chem. Bull. 62, 1579–1585 (2013)

    Article  CAS  Google Scholar 

  98. Parker, C.: A new sensitive chemical actinometer. I. Some trials with potassium ferrioxalate. Proc. R. Soc. Lond. A Math. Phys. Sci. 220, 104–116 (1953)

    CAS  Google Scholar 

  99. Zhang, R., Chandrasena, R.E.P., Martinez, E., Horner, J.H., Newcomb, M.: Formation of compound I by photo-oxidation of compound ii. Org. Lett. 7, 1193–1195 (2005)

    Article  CAS  PubMed  Google Scholar 

  100. Harischandra, D.N., Zhang, R., Newcomb, M.: Photochemical generation of a highly reactive iron− oxo intermediate. A true iron (V)− oxo species? J. Am. Chem. Soc. 127, 13776–13777 (2005)

    Article  CAS  PubMed  Google Scholar 

  101. Richman, R.M., Peterson, M.W.: Photodisproportionation of .Mu.-Oxo-bis[(tetraphenylporphinato)iron(III)]. J. Am. Chem. Soc. 104, 5795–5796 (1982)

    Article  CAS  Google Scholar 

  102. Peterson, M.W., Rivers, D.S., Richman, R.M.: Mechanistic considerations in the photodisproportionation of .Mu.-oxo-bis((tetraphenylporphinato)iron(III)). J. Am. Chem. Soc. 107, 2907–2915 (1985)

    Article  CAS  Google Scholar 

  103. Peterson, M.W., Richman, R.M.: Photodisproportionation of (.Mu.-Oxo)bis((tetrakis(4-carboxyphenyl)porphinato)iron(III), Inorg. Chem. 24, 722–725 (1985)

    Google Scholar 

  104. Pistorio, B.J., Chang, C.J., Nocera, D.G.: A phototriggered molecular spring for aerobic catalytic oxidation reactions. J. Am. Chem. Soc. 124, 7884–7885 (2002)

    Article  CAS  PubMed  Google Scholar 

  105. Hodgkiss, J.M., Chang, C.J., Pistorio, B.J., Nocera, D.G.: Transient absorption studies of the Pacman effect in spring-loaded diiron (III) Μ-oxo bisporphyrins. Inorg. Chem. 42, 8270–8277 (2003)

    Article  CAS  PubMed  Google Scholar 

  106. Rosenthal, J., Pistorio, B.J., Chng, L.L., Nocera, D.G.: Aerobic catalytic photooxidation of olefins by an electron-deficient Pacman bisiron (III) Μ-oxo porphyrin. J. Org. Chem. 70, 1885–1888 (2005)

    Article  CAS  PubMed  Google Scholar 

  107. Rosenthal, J., Luckett, T.D., Hodgkiss, J.M., Nocera, D.G.: Photocatalytic oxidation of hydrocarbons by a bis-iron(III)-Μ-oxo Pacman porphyrin using O2 and visible light. J. Am. Chem. Soc. 128, 6546–6547 (2006)

    Article  CAS  PubMed  Google Scholar 

  108. Ghosh, S.K., Patra, R., Rath, S.P.: Synthesis, structure and photocatalytic activity of a remarkably bent, cofacial ethene-linked diiron (III) Μ-oxobisporphyrin. Inorg. Chim. Acta. 363, 2791–2799 (2010)

    Article  CAS  Google Scholar 

  109. Wasser, I.M., Fry, H.C., Hoertz, P.G., Meyer, G.J., Karlin, K.D.: Photochemical organic oxidations and dechlorinations with a Μ-oxo bridged heme/non-heme diiron complex. Inorg. Chem. 43, 8272–8281 (2004)

    Article  CAS  PubMed  Google Scholar 

  110. Harischandra, D.N., Lowery, G., Zhang, R., Newcomb, M.: Production of a putative iron(V)−oxocorrole species by photo-disproportionation of a bis-corrole−diiron(IV)−Μ-oxo dimer: implication for a green oxidation catalyst. Org. Lett. 11, 2089–2092 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Company, A., Sabenya, G., González-Béjar, M., Gómez, L., Clémancey, M., Blondin, G., Jasniewski, A.J., Puri, M., Browne, W.R., Latour, J.-M., Que, L., Costas, M., Pérez-Prieto, J., Lloret-Fillol, J.: Triggering the generation of an iron(IV)-oxo compound and its reactivity toward sulfides by RuII photocatalysis. J. Am. Chem. Soc. 136, 4624–4633 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Agenet, N., Buisine, O., Slowinski, F., Gandon, V., Aubert, C., Malacria, M.: Cotrimerizations of acetylenic compounds. Org. React. 68, 1–302 (2004)

    Google Scholar 

  113. Kreis, L.M., Krautwald, S., Pfeiffer, N., Martin, R.E., Carreira, E.M.: Photocatalytic synthesis of allylic trifluoromethyl substituted styrene derivatives in batch and flow. Org. Lett. 15, 1634–1637 (2013)

    Article  CAS  PubMed  Google Scholar 

  114. Pal, A.K., Li, C., Hanan, G.S., Zysman-Colman, E.: Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018)

    Article  CAS  Google Scholar 

  115. Okamoto, S., Ariki, R., Tsujioka, H., Sudo, A.: A metal-free approach to 1,2-diamines via visible light-driven reductive coupling of imines with perylene as a photoredox catalyst. J. Org. Chem. 82, 9731–9736 (2017)

    Article  CAS  PubMed  Google Scholar 

  116. Noto, N., Koike, T., Akita, M.: Metal-free di-and tri-fluoromethylation of alkenes realized by visible-light-induced perylene photoredox catalysis. Chem. Sci. 8, 6375–6379 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brasholz, M.: “Super-reducing” photocatalysis: consecutive energy and electron transfers with polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 56, 10280–10281 (2017)

    Article  CAS  Google Scholar 

  118. Nagib, D.A., MacMillan, D.W.C.: Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature. 480, 224 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Banerjee, R.: Radical carbon skeleton rearrangements: catalysis by coenzyme B12-dependent mutases. Chem. Rev. 103, 2083–2094 (2003)

    Article  CAS  PubMed  Google Scholar 

  120. Martin, B.D., Finke, R.G.: Methylcobalamin’s full-vs. half-strength cobalt-carbon sigma bonds and bond dissociation enthalpies: A> 10^ 15 Co-Ch3 homolysis rate enhancement following one-antibonding-electron reduction of methlycobalamin. J. Am. Chem. Soc. 114, 585–592 (1992)

    Article  CAS  PubMed  Google Scholar 

  121. Harris, C.F., Bayless, M.B., van Leest, N.P., Bruch, Q.J., Livesay, B.N., Bacsa, J., Hardcastle, K.I., Shores, M.P., de Bruin, B., Soper, J.D.: Redox-active bis (phenolate) N-heterocyclic carbene [oco] pincer ligands support cobalt electron transfer series spanning four oxidation states. Inorg. Chem. 56, 12421–12435 (2017)

    Article  CAS  PubMed  Google Scholar 

  122. Harris, C.F., Kuehner, C.S., Bacsa, J., Soper, J.D.: Photoinduced cobalt(III)−trifluoromethyl bond activation enables arene C−H trifluoromethylation. Angew. Chem. Int. Ed. 57, 1311–1315 (2018)

    Article  CAS  Google Scholar 

  123. Najafpour, M.M., Renger, G., Hołyńska, M., Moghaddam, A.N., Aro, E.-M., Carpentier, R., Nishihara, H., Eaton-Rye, J.J., Shen, J.-R., Allakhverdiev, S.I.: Manganese compounds as water-oxidizing catalysts: from the natural water-oxidizing complex to nanosized manganese oxide structures. Chem. Rev. 116, 2886–2936 (2016)

    Article  CAS  PubMed  Google Scholar 

  124. Huang, X., Groves, J.T.: Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Baglia, R.A., Zaragoza, J.P.T., Goldberg, D.P.: Biomimetic reactivity of oxygen-derived manganese and iron porphyrinoid complexes. Chem. Rev. 117, 13320–13352 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Moody, P.C., Raven, E.L.: The nature and reactivity of ferryl heme in compounds I and II. Acc. Chem. Res. 51, 427–435 (2018)

    Article  CAS  PubMed  Google Scholar 

  127. Saracini, C., Malik, D.D., Sankaralingam, M., Lee, Y.-M., Nam, W., Fukuzumi, S.: Enhanced electron-transfer reactivity of a long-lived photoexcited state of a cobalt–oxygen complex. Inorg. Chem. 57, 10945–10952 (2018)

    Article  CAS  PubMed  Google Scholar 

  128. Malzkuhn, S., Wenger, O.S.: Luminescent Ni (0) Complexes. Coord. Chem. Rev. 359, 52–56 (2018)

    Article  CAS  Google Scholar 

  129. Ziolo, R.F., Lipton, S., Dori, Z.: The photoluminescence of phosphine complexes of D10 metals. J. Chem. Soc. D. (1970). https://doi.org/10.1039/c297000011241124-1125

  130. Caspar, J.V.: Long-lived reactive excited states of zero-valent phosphine, phosphite, and arsine complexes of nickel, palladium and platinum. J. Am. Chem. Soc. 107, 6718–6719 (1985)

    Article  CAS  Google Scholar 

  131. Frem, R.C.G., Massabni, A.C., Massabni, A., Mauro, A.E.: Syntheses and luminescent properties of tetrahedral nickel (0) complexes. Inorg. Chim. Acta. 255, 53–58 (1997)

    Article  CAS  Google Scholar 

  132. Kunkely, H., Vogler, A.: Absorption and emission spectrum of bis-(triphenylphosphine)-dicarbonylnickel (0). Inorg. Chem. Commun. 3, 143–144 (2000)

    Article  CAS  Google Scholar 

  133. Kunkely, H., Vogler, A.: Optical properties of transition metal complexes with N-heterocyclic carbenes as ligands. 1, 3-di-T-butylimidazol-2-ylidene as charge transfer donor and acceptor. J. Organomet. Chem. 684, 113–116 (2003)

    Article  CAS  Google Scholar 

  134. Büldt, L.A., Larsen, C.B., Wenger, O.S.: Luminescent Ni0 diisocyanide chelates as analogues of CuI diimine complexes. Chem. Eur. J. 23, 8577–8580 (2017)

    Article  PubMed  CAS  Google Scholar 

  135. Ake, R.L., Gouterman, M.: Porphyrins. Theor. Chim. Acta. 17, 408–416 (1970)

    Article  CAS  Google Scholar 

  136. Antipas, A., Gouterman, M.: Porphyrins. 44. Electronic states of cobalt, nickel, rhodium, and palladium complexes. J. Am. Chem. Soc. 105, 4896–4901 (1983)

    Article  CAS  Google Scholar 

  137. Naskar, S., Naskar, S., Butcher, R.J., Chattopadhyay, S.K.: Synthesis and spectroscopic properties of Ni (II) complexes of some aroyl hydrazone ligands with 2, 6-diacetyl pyridine monooxime: X-ray crystal structure of the salicyloylhydrazone Ni (II) complex. Inorg. Chim. Acta. 363, 3641–3646 (2010)

    Article  CAS  Google Scholar 

  138. Schnuriger, M., Tague, E., Richter, M.M.: Electrogenerated chemiluminescence properties of bisalicylideneethylenediamino (salen) metal complexes. Inorg. Chim. Acta. 379, 158–162 (2011)

    Article  CAS  Google Scholar 

  139. Bhattacharjee, C.R., Das, G., Mondal, P.: Photoluminescent hemidisc-shaped liquid crystalline nickel (II) Schiff-Base complexes. Eur. J. Inorg. Chem. 2011, 5390–5396 (2011)

    Article  CAS  Google Scholar 

  140. Barwiolek, M., Szlyk, E., Muzioł, T.M., Lis, T.: Structural and luminescence studies of nickel (II) and copper (II) complexes with (1r, 2r)-cyclohexanediamine derived unsymmetric Schiff base. Dalton Trans. 40, 11012–11022 (2011)

    Article  CAS  PubMed  Google Scholar 

  141. Xu, J.-Y., Xie, C.-Z., Xue, F., Hao, L.-F., Ma, Z.-Y., Liao, D.-Z., Yan, S.-P.: Directed assembly and characterization of 1d polymers based on [MII (BMA)] 2+ node (M= Cu, Mn, Ni and Zn; BMA= N, N-bis (benzimidazol-2-yl-methyl) amine) with linear bridging dicyanamide and terephthalate ligands. Dalton Trans. 39, 7159–7166 (2010)

    Article  CAS  PubMed  Google Scholar 

  142. Dalai, S., Rana, A., Bera, M., Chowdhuri, D.S., Zangrando, E.: 3d non porous and thermally labile nickel (II) and manganese (II) complexes with hetero donor ligands: synthesis, X-ray single crystal structure, thermal and luminescent study. Inorg. Chim. Acta. 363, 1843–1848 (2010)

    Article  CAS  Google Scholar 

  143. Vogler, A.: Nickel (II) complexes as triplet emitters? IL phosphorescence of Ni (II)(binap) Cl2 under ambient conditions. Inorg. Chem. Commun. 65, 39–40 (2016)

    Article  CAS  Google Scholar 

  144. Santana, M.D., García-Bueno, R., García, G., Pérez, J., García, L., Monge, M., Laguna, A.: Luminescence of five-coordinated nickel (II) complexes with substituted-8-hydroxyquinolines and macrocyclic ligands. Dalton Trans. 39, 1797–1806 (2010)

    Article  CAS  PubMed  Google Scholar 

  145. López-Banet, L., Santana, M.D., García, G., Piernas, M.J., García, L., Pérez, J., Calderón-Casado, A., Barandika, G.: Crystal structures and spectroscopic and theoretical properties of pentacoordinate nickel (II) complexes containing tris (pyrazolyl) borate and quinolinate ligands. Eur. J. Inorg. Chem. 2013, 4280–4290 (2013)

    Article  CAS  Google Scholar 

  146. Welin, E.R., Le, C., Arias-Rotondo, D.M., McCusker, J.K., MacMillan, D.W.: Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel (II). Science. 355, 380–385 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Grübel, M., Bosque, I., Altmann, P.J., Bach, T., Hess, C.R.: Redox and photocatalytic properties of a Ni II complex with a macrocyclic biquinazoline (Mabiq) ligand. Chem. Sci. 9, 3313–3317 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shields, B.J., Kudisch, B., Scholes, G.D., Doyle, A.G.: Long-lived charge-transfer states of nickel (II) aryl halide complexes facilitate bimolecular photoinduced electron transfer. J. Am. Chem. Soc. 140, 3035–3039 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hwang, S.J., Powers, D.C., Maher, A.G., Anderson, B.L., Hadt, R.G., Zheng, S.-L., Chen, Y.-S., Nocera, D.G.: Trap-free halogen photoelimination from mononuclear Ni (III) complexes. J. Am. Chem. Soc. 137, 6472–6475 (2015)

    Article  CAS  PubMed  Google Scholar 

  150. Paria, S., Reiser, O.: Copper in photocatalysis. ChemCatChem. 6, 2477–2483 (2014)

    Article  CAS  Google Scholar 

  151. Lazorski, M.S., Castellano, F.N.: Advances in the light conversion properties of Cu(I)-based photosensitizers. Polyhedron. 82, 57–70 (2014)

    Article  CAS  Google Scholar 

  152. Kuang, S.-M., Cuttell, D.G., McMillin, D.R., Fanwick, P.E., Walton, R.A.: Synthesis and structural characterization of Cu(I) and Ni(II) complexes that contain the bis[2-(diphenylphosphino)phenyl]ether ligand. Novel emission properties for the Cu(I) species. Inorg. Chem. 41, 3313–3322 (2002)

    Article  CAS  PubMed  Google Scholar 

  153. Cuttell, D.G., Kuang, S.-M., Fanwick, P.E., McMillin, D.R., Walton, R.A.: Simple Cu(I) complexes with unprecedented excited-state lifetimes. J. Am. Chem. Soc. 124, 6–7 (2002)

    Article  CAS  PubMed  Google Scholar 

  154. Luo, S.-P., Mejía, E., Friedrich, A., Pazidis, A., Junge, H., Surkus, A.-E., Jackstell, R., Denurra, S., Gladiali, S., Lochbrunner, S., Beller, M.: Photocatalytic water reduction with copper-based photosensitizers: a noble-metal-free system. Angew. Chem. Int. Ed. 52, 419–423 (2013)

    Article  CAS  Google Scholar 

  155. Zhang, Y., Schulz, M., Wächtler, M., Karnahl, M., Dietzek, B.: Heteroleptic diimine–diphosphine Cu(I) complexes as an alternative towards noble-metal based photosensitizers: design strategies, photophysical properties and perspective applications. Coord. Chem. Rev. 356, 127–146 (2018)

    Article  CAS  Google Scholar 

  156. Siddique, Z.A., Yamamoto, Y., Ohno, T., Nozaki, K.: Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds. Inorg. Chem. 42, 6366–6378 (2003)

    Article  CAS  PubMed  Google Scholar 

  157. Iwamura, M., Takeuchi, S., Tahara, T.: Ultrafast excited-state dynamics of copper(I) complexes. Acc. Chem. Res. 48, 782–791 (2015)

    Article  CAS  PubMed  Google Scholar 

  158. Armaroli, N.: Photoactive mono- and polynuclear Cu()–phenanthrolines. A viable alternative to Ru()–polypyridines? Chem. Soc. Rev. 30, 113–124 (2001)

    Article  CAS  Google Scholar 

  159. Moudam, O., Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Holler, M., Accorsi, G., Armaroli, N., Séguy, I., Navarro, J., Destruel, P., Nierengarten, J.-F.: Electrophosphorescent homo- and heteroleptic copper(I) complexes prepared from various bis-phosphine ligands. Chem. Commun. (2007). https://doi.org/10.1039/b707398d3077-3079

  160. Lavie-Cambot, A., Cantuel, M., Leydet, Y., Jonusauskas, G., Bassani, D.M., McClenaghan, N.D.: Improving the photophysical properties of copper(I) bis(phenanthroline) complexes. Coord. Chem. Rev. 252, 2572–2584 (2008)

    Article  CAS  Google Scholar 

  161. Mara, M.W., Fransted, K.A., Chen, L.X.: Interplays of excited state structures and dynamics in copper(I) diimine complexes: implications and perspectives. Coord. Chem. Rev. 282–283, 2–18 (2015)

    Article  CAS  Google Scholar 

  162. Zhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X., Wang, F.: Highly efficient green phosphorescent organic light-emitting diodes based on CuI complexes. Adv. Mater. 16, 432–436 (2004)

    Article  CAS  Google Scholar 

  163. Czerwieniec, R., Kowalski, K., Yersin, H.: Highly efficient thermally activated fluorescence of a new rigid Cu(I) complex [Cu(dmp)(phanephos)]+. Dalton Trans. 42, 9826–9830 (2013)

    Article  CAS  PubMed  Google Scholar 

  164. Czerwieniec, R., Yu, J., Yersin, H.: Blue-light emission of Cu(I) complexes and singlet harvesting. Inorg. Chem. 50, 8293–8301 (2011)

    Article  CAS  PubMed  Google Scholar 

  165. Kim, J., Whang, D.R., Park, S.Y.: Designing highly efficient Cui photosensitizers for photocatalytic H2 evolution from water. ChemSusChem. 10, 1883–1886 (2017)

    Article  CAS  PubMed  Google Scholar 

  166. Lennox, A.J.J., Fischer, S., Jurrat, M., Luo, S.-P., Rockstroh, N., Junge, H., Ludwig, R., Beller, M.: Copper-based photosensitisers in water reduction: a more efficient in situ formed system and improved mechanistic understanding. Chem. Eur. J. 22, 1233–1238 (2016)

    Article  CAS  PubMed  Google Scholar 

  167. Femoni, C., Muzzioli, S., Palazzi, A., Stagni, S., Zacchini, S., Monti, F., Accorsi, G., Bolognesi, M., Armaroli, N., Massi, M., Valenti, G., Marcaccio, M.: New tetrazole-based Cu(I) homo- and heteroleptic complexes with various P^P ligands: synthesis, characterization, redox and photophysical properties. Dalton Trans. 42, 997–1010 (2013)

    Article  CAS  PubMed  Google Scholar 

  168. Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Coppel, Y., Nierengarten, J.-F.: Heteroleptic silver(I) complexes prepared from phenanthroline and bis-phosphine ligands. Inorg. Chem. 52, 14343–14354 (2013)

    Article  CAS  PubMed  Google Scholar 

  169. Đokić, M., Soo, H.S.: Artificial photosynthesis by light absorption, charge separation, and multielectron catalysis. Chem. Commun. 54, 6554–6572 (2018)

    Article  Google Scholar 

  170. McMillin, D.R., Kirchhoff, J.R., Goodwin, K.V.: Exciplex quenching of photo-excitd copper complexes. Coord. Chem. Rev. 64, 83–92 (1985)

    Article  CAS  Google Scholar 

  171. Zhang, Y., Heberle, M., Wächtler, M., Karnahl, M., Dietzek, B.: Determination of side products in the photocatalytic generation of hydrogen with copper photosensitizers by resonance Raman spectroelectrochemistry. RSC Adv. 6, 105801–105805 (2016)

    Article  CAS  Google Scholar 

  172. Delaney, S., Pascaly, M., Bhattacharya, P.K., Han, K., Barton, J.K.: Oxidative damage by ruthenium complexes containing the dipyridophenazine ligand or its derivatives: a focus on intercalation. Inorg. Chem. 41, 1966–1974 (2002)

    Article  CAS  PubMed  Google Scholar 

  173. Cunningham, K.L., McMillin, D.R.: Reductive quenching of photoexcited Cu(dipp)2+ and Cu(tptap)2+ by ferrocenes (dipp = 2,9-diisopropyl-1,10-phenanthroline and tptap = 2,3,6,7-tetraphenyl-1,4,5,8-tetraazaphenanthrene). Inorg. Chem. 37, 4114–4119 (1998)

    Article  CAS  PubMed  Google Scholar 

  174. Cunningham, K.L., Hecker, C.R., McMillin, D.R.: Competitive energy-transfer and reductive quenching of the CT excited states of copper(L) Phenanthrolines. Inorg. Chim. Acta. 242, 143–147 (1996)

    Article  CAS  Google Scholar 

  175. Karnahl, M., Meja, E., Rockstroh, N., Tschierlei, S., Luo, S.-P., Grabow, K., Kruth, A., Brser, V., Junge, H., Lochbrunner, S., Beller, M.: Photocatalytic hydrogen production with copper photosensitizer–titanium dioxide composites. ChemCatChem. 6, 82–86 (2014)

    Article  CAS  Google Scholar 

  176. Mejía, E., Luo, S., Karnahl, M., Friedrich, A., Tschierlei, S., Surkus, A., Junge, H., Gladiali, S., Lochbrunner, S., Beller, M.: A noble-metal-free system for photocatalytic hydrogen production from water. Chem. Eur. J. 19, 15972–15978 (2013)

    Article  PubMed  CAS  Google Scholar 

  177. Fischer, S., Hollmann, D., Tschierlei, S., Karnahl, M., Rockstroh, N., Barsch, E., Schwarzbach, P., Luo, S.-P., Junge, H., Beller, M., Lochbrunner, S., Ludwig, R., Brückner, A.: Death and rebirth: photocatalytic hydrogen production by a self-organizing copper–iron system. ACS Catal. 4, 1845–1849 (2014)

    Article  CAS  Google Scholar 

  178. Kern, J.-M., Sauvage, J.-P.: Photoassisted C–C coupling via electron transfer to benzylic halides by a bis(di-imine) copper(I) complex. J. Chem. Soc., Chem. Commun. (1987). https://doi.org/10.1039/c39870000546546-548

  179. Mitani, M., Kato, I., Koyama, K.: Photoaddition of alkyl halides to olefins catalyzed by copper(I) complexes. J. Am. Chem. Soc. 105, 6719–6721 (1983)

    Article  CAS  Google Scholar 

  180. Pirtsch, M., Paria, S., Matsuno, T., Isobe, H., Reiser, O.: [Cu(dap)2Cl] as an efficient visible-light-driven photoredox catalyst in carbon–carbon bond-forming reactions. Chem. Eur. J. 18, 7336–7340 (2012)

    Article  CAS  PubMed  Google Scholar 

  181. Reiser, O.: Shining light on copper: unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc. Chem. Res. 49, 1990–1996 (2016)

    Article  CAS  PubMed  Google Scholar 

  182. Bagal, D.B., Kachkovskyi, G., Knorn, M., Rawner, T., Bhanage, B.M., Reiser, O.: Trifluoromethylchlorosulfonylation of alkenes: evidence for an inner-sphere mechanism by a copper phenanthroline photoredox catalyst. Angew. Chem. Int. Ed. 54, 6999–7002 (2015)

    Article  CAS  Google Scholar 

  183. Hernandez-Perez, A.C., Collins, S.K.: A visible-light-mediated synthesis of carbazoles. Angew. Chem. Int. Ed. 52, 12696–12700 (2013)

    Article  CAS  Google Scholar 

  184. Hernandez-Perez, A.C., Collins, S.K.: Heteroleptic Cu-based sensitizers in photoredox catalysis. Acc. Chem. Res. 49, 1557–1565 (2016)

    Article  CAS  PubMed  Google Scholar 

  185. Hernandez-Perez, A.C., Vlassova, A., Collins, S.K.: Toward a visible light mediated photocyclization: Cu-based sensitizers for the synthesis of [5]helicene. Org. Lett. 14, 2988–2991 (2012)

    Article  CAS  PubMed  Google Scholar 

  186. Creutz, S.E., Lotito, K.J., Fu, G.C., Peters, J.C.: Photoinduced Ullmann C–N coupling: demonstrating the viability of a radical pathway. Science. 338, 647–651 (2012)

    Article  CAS  PubMed  Google Scholar 

  187. Larsen, C.B., Wenger, O.S.: Photoredox catalysis with metal complexes made from earth-abundant elements. Chem. Eur. J. 24, 2039–2058 (2018)

    Article  CAS  PubMed  Google Scholar 

  188. Ahn, J.M., Ratani, T.S., Hannoun, K.I., Fu, G.C., Peters, J.C.: Photoinduced, copper-catalyzed alkylation of amines: a mechanistic study of the cross-coupling of carbazole with alkyl bromides. J. Am. Chem. Soc. 139, 12716–12723 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Johnson, M.W., Hannoun, K.I., Tan, Y., Fu, G.C., Peters, J.C.: A mechanistic investigation of the photoinduced, copper-mediated cross-coupling of an aryl thiol with an aryl halide. Chem. Sci. 7, 4091–4100 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Call, A., Casadevall, C., Acuña-Parés, F., Casitas, A., Lloret-Fillol, J.: Dual cobalt–copper light-driven catalytic reduction of aldehydes and aromatic ketones in aqueous media. Chem. Sci. 8, 4739–4749 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kalyanasundaram, K., Kiwi, J., Grätzel, M.: Hydrogen evolution from water by visible light, a homogeneous three component test system for redox catalysis. Helv. Chim. Acta. 61, 2720–2730 (1978)

    Article  CAS  Google Scholar 

  192. Kiwi, J., Graetzel, M.: Dynamics of light-induced redox processes in microemulsion systems. J. Am. Chem. Soc. 100, 6314–6320 (1978)

    Article  CAS  Google Scholar 

  193. Jiang, W., Liu, J., Li, C.: Photochemical hydrogen evolution catalyzed by trimetallic [Re–Fe] complexes. Inorg. Chem. Commun. 16, 81–85 (2012)

    Article  CAS  Google Scholar 

  194. Mak, C.S.K., Wong, H.L., Leung, Q.Y., Tam, W.Y., Chan, W.K., Djurišić, A.B..: The use of sublimable chlorotricarbonyl bis(phenylimino)acenaphthene rhenium(I) complexes as photosensitizers in bulk-heterojunction photovoltaic devices. J. Organomet. Chem. 694, 2770–2776 (2009)

    Article  CAS  Google Scholar 

  195. Probst, B., Kolano, C., Hamm, P., Alberto, R.: An efficient homogeneous intermolecular rhenium-based photocatalytic system for the production of H2. Inorg. Chem. 48, 1836–1843 (2009)

    Article  CAS  PubMed  Google Scholar 

  196. Takeda, H., Koike, K., Morimoto, T., Inumaru, H., Ishitani, O.: Photochemistry and photocatalysis of rhenium(I) diimine complexes. Advances in Inorganic Chemistry. 63, 137–186. (2011)

    Google Scholar 

  197. Kurz, P., Probst, B., Spingler, B., Alberto, R.: Ligand variations in [ReX(diimine)(CO)3] complexes: effects on photocatalytic CO2 reduction. Eur. J. Inorg. Chem. 2006, 2966–2974 (2006)

    Article  CAS  Google Scholar 

  198. Probst, B., Guttentag, M., Rodenberg, A., Hamm, P., Alberto, R.: Photocatalytic H2 production from water with rhenium and cobalt complexes. Inorg. Chem. 50, 3404–3412 (2011)

    Article  CAS  PubMed  Google Scholar 

  199. Probst, B., Rodenberg, A., Guttentag, M., Hamm, P., Alberto, R.: A highly stable rhenium−cobalt system for photocatalytic H2 production: unraveling the performance-limiting steps. Inorg. Chem. 49, 6453–6460 (2010)

    Article  CAS  PubMed  Google Scholar 

  200. Du, P., Knowles, K., Eisenberg, R.: A homogeneous system for the photogeneration of hydrogen from water based on a platinum(II) terpyridyl acetylide chromophore and a molecular cobalt catalyst. J. Am. Chem. Soc. 130, 12576–12577 (2008)

    Article  CAS  PubMed  Google Scholar 

  201. Vrandečić, N.S., Erceg, M., Jakić, M., Klarić, I.: Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim. Acta. 498, 71–80 (2010)

    Article  CAS  Google Scholar 

  202. Okazaki, R., Masaoka, S., Sakai, K.: Photo-hydrogen-evolving activity of chloro(terpyridine)platinum(II): a single-component molecular photocatalyst. Dalton Trans. (2009). https://doi.org/10.1039/b905610f6127-6133

  203. DiSalle, B.F., Bernhard, S.: Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. J. Am. Chem. Soc. 133, 11819–11821 (2011)

    Article  CAS  PubMed  Google Scholar 

  204. Gärtner, F., Boddien, A., Barsch, E., Fumino, K., Losse, S., Junge, H., Hollmann, D., Brückner, A., Ludwig, R., Beller, M.: Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights. Chem. Eur. J. 17, 6425–6436 (2011)

    Article  PubMed  CAS  Google Scholar 

  205. Gärtner, F., Cozzula, D., Losse, S., Boddien, A., Anilkumar, G., Junge, H., Schulz, T., Marquet, N., Spannenberg, A., Gladiali, S., Beller, M.: Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Chem. Eur. J. 17, 6998–7006 (2011)

    Article  PubMed  CAS  Google Scholar 

  206. Gärtner, F., Denurra, S., Losse, S., Neubauer, A., Boddien, A., Gopinathan, A., Spannenberg, A., Junge, H., Lochbrunner, S., Blug, M., Hoch, S., Busse, J., Gladiali, S., Beller, M.: Synthesis and characterization of new iridium photosensitizers for catalytic hydrogen generation from water. Chem. Eur. J. 18, 3220–3225 (2012)

    Article  PubMed  CAS  Google Scholar 

  207. Chatterjee, D.: Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst. Catal. Commun. 11, 336–339 (2010)

    Article  CAS  Google Scholar 

  208. Lazarides, T., McCormick, T., Du, P., Luo, G., Lindley, B., Eisenberg, R.: Making hydrogen from water using a homogeneous system without noble metals. J. Am. Chem. Soc. 131, 9192–9194 (2009)

    Article  CAS  PubMed  Google Scholar 

  209. McCormick, T.M., Calitree, B.D., Orchard, A., Kraut, N.D., Bright, F.V., Detty, M.R., Eisenberg, R.: Reductive side of water splitting in artificial photosynthesis: new homogeneous photosystems of great activity and mechanistic insight. J. Am. Chem. Soc. 132, 15480–15483 (2010)

    Article  CAS  PubMed  Google Scholar 

  210. Nagatomo, M., Hagiwara, H., Ida, S., Ishihara, T.: Modification effect of organic dyes on photocatalytic water splitting activity of KTa(Zr)O3. Electrochemistry. 79, 779–782 (2011)

    Article  CAS  Google Scholar 

  211. Wang, F., Wang, W.-G., Wang, X.-J., Wang, H.-Y., Tung, C.-H., Wu, L.-Z.: A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. Angew. Chem. Int. Ed. 50, 3193–3197 (2011)

    Article  CAS  Google Scholar 

  212. Wang, H.-Y., Wang, W.-G., Si, G., Wang, F., Tung, C.-H., Wu, L.-Z.: Photocatalytic hydrogen evolution from rhenium(I) complexes to [Fefe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway. Langmuir. 26, 9766–9771 (2010)

    Article  CAS  PubMed  Google Scholar 

  213. Wang, W.-G., Wang, F., Wang, H.-Y., Si, G., Tung, C.-H., Wu, L.-Z.: Photocatalytic hydrogen evolution by [Fefe] hydrogenase mimics in homogeneous solution. Chem. Asian J. 5, 1796–1803 (2010)

    Article  CAS  PubMed  Google Scholar 

  214. Wang, F., Wang, W.-G., Wang, H.-Y., Si, G., Tung, C.-H., Wu, L.-Z.: Artificial photosynthetic systems based on [Fefe]-hydrogenase mimics: the road to high efficiency for light-driven hydrogen evolution. ACS Catal. 2, 407–416 (2012)

    Article  CAS  Google Scholar 

  215. Sun, L., Åkermark, B., Ott, S.: Iron hydrogenase active site mimics in supramolecular systems aiming for light-driven hydrogen production. Coord. Chem. Rev. 249, 1653–1663 (2005)

    Article  CAS  Google Scholar 

  216. Poddutoori, P., Co, D.T., Samuel, A.P.S., Kim, C.H., Vagnini, M.T., Wasielewski, M.R.: Photoinitiated multistep charge separation in ferrocene–zinc porphyrin–diiron hydrogenase model complex triads. Energy Environ. Sci. 4, 2441–2450 (2011)

    Article  CAS  Google Scholar 

  217. Hiroyasu, Y., Takeshi, O., Hidetaka, O., Noriaki, I., Akira, H.: Photoinduced hydrogen-evolution system with an antibody–porphyrin complex as a photosensitizer. Bull. Chem. Soc. Jpn. 82, 1341–1346 (2009)

    Article  CAS  Google Scholar 

  218. Zorlu, Y., Dumoulin, F., Durmuş, M., Ahsen, V.: Comparative studies of photophysical and photochemical properties of solketal substituted platinum(II) and Zinc(II) phthalocyanine sets. Tetrahedron. 66, 3248–3258 (2010)

    Article  CAS  Google Scholar 

  219. Amao, Y., Hirakawa, T.: Hydrolysis of a mixture of saccharides by cellulase from aspergillus niger and its application for visible-light-induced hydrogen gas production system using Mg chlorophyll-a and platinum nanoparticles. Int. J. Hydrog. Energy. 35, 6624–6628 (2010)

    Article  CAS  Google Scholar 

  220. Amao, Y., Hirakawa, T., Himeshima, N.: Photoinduced biohydrogen production from saccharide mixture with the photosensitization of Mg chlorophyll a from green plant. Catal. Commun. 9, 131–134 (2008)

    Article  CAS  Google Scholar 

  221. Amao, Y., Maki, Y., Fuchino, Y.: Photoinduced hydrogen production with artificial photosynthesis system based on carotenoid−chlorophyll conjugated micelles. J. Phys. Chem. C. 113, 16811–16815 (2009)

    Article  CAS  Google Scholar 

  222. Amao, Y., Nakamura, N.: Biohydrogen production with the light-harvesting function of grana from spirulina and colloidal platinum. Int. J. Hydrog. Energy. 31, 39–42 (2006)

    Article  CAS  Google Scholar 

  223. Mejía, E., Luo, S.P., Karnahl, M., Friedrich, A., Tschierlei, S., Surkus, A.E., Junge, H., Gladiali, S., Lochbrunner, S., Beller, M.: A noble-metal-free system for photocatalytic hydrogen production from water. Chem. Eur. J. 19, 15972–15978 (2013)

    Article  PubMed  CAS  Google Scholar 

  224. Chen, N.Y., Xia, L.M., Lennox, A.J., Sun, Y.Y., Chen, H., Jin, H.M., Junge, H., Wu, Q.A., Jia, J.H., Beller, M.: Structure-activated copper photosensitisers for photocatalytic water reduction. Chem. Eur. J. 23, 3631–3636 (2017)

    Article  CAS  PubMed  Google Scholar 

  225. Luo, S.-P., Chen, N.-Y., Sun, Y.-Y., Xia, L.-M., Wu, Z.-C., Junge, H., Beller, M., Wu, Q.-A.: Heteroleptic copper (I) photosensitizers of dibenzo [B, J]-1, 10-phenanthroline derivatives driven hydrogen generation from water reduction. Dyes Pigments. 134, 580–585 (2016)

    Article  CAS  Google Scholar 

  226. McCullough, B.J., Neyhouse, B.J., Schrage, B.R., Reed, D.T., Osinski, A.J., Ziegler, C.J., White, T.A.: Visible-light-driven photosystems using heteroleptic Cu(I) photosensitizers and Rh(III) catalysts to produce H2. Inorg. Chem. 57, 2865–2875 (2018)

    Article  CAS  PubMed  Google Scholar 

  227. Windisch, J., Orazietti, M., Hamm, P., Alberto, R., Probst, B.: General scheme for oxidative quenching of a copper bis-phenanthroline photosensitizer for light-driven hydrogen production. ChemSusChem. 9, 1719–1726 (2016)

    Article  CAS  PubMed  Google Scholar 

  228. Call, A., Codolà, Z., Acuña-Parés, F., Lloret-Fillol, J.: Photo- and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Chem. Eur. J. 20, 6171–6183 (2014)

    Article  CAS  PubMed  Google Scholar 

  229. Call, A., Franco, F., Kandoth, N., Fernández, S., González-Béjar, M., Pérez-Prieto, J., Luis, J.M., Lloret-Fillol, J.: Understanding light-driven H2 evolution through the electronic tuning of aminopyridine cobalt complexes. Chem. Sci. 9, 2609–2619 (2018)

    Article  CAS  PubMed  Google Scholar 

  230. Call, A., Codolà, Z., Acuña-Parés, F., Lloret-Fillol, J.: Photo-and electrocatalytic H2 production by new first-row transition-metal complexes based on an aminopyridine pentadentate ligand. Chem. Eur. J. 20, 6171–6183 (2014)

    Article  CAS  PubMed  Google Scholar 

  231. Claros, M., Ungeheuer, F., Franco, F., Martin-Diaconescu, V., Casitas, A., Lloret-Fillol, J.: Reductive cyclization of unactivated alkyl chlorides with tethered alkenes under visible-light photoredox catalysis. Angew. Chem. Int. Ed. 58, 4869–4874 (2019)

    Article  CAS  Google Scholar 

  232. Johnston, C.P., Smith, R.T., Allmendinger, S., MacMillan, D.W.C.: Metallaphotoredox-catalysed Sp3–Sp3 cross-coupling of carboxylic acids with alkyl halides. Nature. 536, 322 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Michelet, B., Deldaele, C., Kajouj, S., Moucheron, C., Evano, G.: A general copper catalyst for photoredox transformations of organic halides. Org. Lett. 19, 3576–3579 (2017)

    Article  CAS  PubMed  Google Scholar 

  234. Pischel, U., Zhang, X., Hellrung, B., Haselbach, E., Muller, P.-A., Nau, W.M.: Fluorescence quenching of N,Π*-excited azoalkanes by amines: what is a sterically hindered amine? J. Am. Chem. Soc. 122, 2027–2034 (2000)

    Article  CAS  Google Scholar 

  235. Kaeser, A., Moudam, O., Accorsi, G., Séguy, I., Navarro, J., Belbakra, A., Duhayon, C., Armaroli, N., Delavaux-Nicot, B., Nierengarten, J.F.: Homoleptic copper (I), silver (I), and gold (I) bisphosphine complexes. Eur. J. Inorg. Chem. 2014, 1345–1355 (2014)

    Article  CAS  Google Scholar 

  236. Andrés-Tomé, I., Fyson, J., Baiao Dias, F., Monkman, A.P., Iacobellis, G., Coppo, P.: Copper(I) complexes with bipyridyl and phosphine ligands: a systematic study. Dalton Trans. 41, 8669–8674 (2012)

    Article  PubMed  CAS  Google Scholar 

  237. Xiao, P., Dumur, F., Zhang, J., Fouassier, J.P., Gigmes, D., Lalevée, J.: Copper complexes in radical photoinitiating systems: applications to free radical and cationic polymerization upon visible leds. Macromolecules. 47, 3837–3844 (2014)

    Article  CAS  Google Scholar 

  238. Moudam, O., Kaeser, A., Delavaux-Nicot, B., Duhayon, C., Holler, M., Accorsi, G., Armaroli, N., Séguy, I., Navarro, J., Destruel, P.: Electrophosphorescent homo-and heteroleptic copper (I) complexes prepared from various bis-phosphine ligands. Chem. Commun. (29), 3077–3079 (2007)

    Google Scholar 

  239. Marion, R., Sguerra, F., Di Meo, F., Sauvageot, E., Lohier, J.-F.o., Daniellou, R., Renaud, J.-L., Linares, M., Hamel, M., Gaillard, S.: NHC copper (I) complexes bearing dipyridylamine ligands: synthesis, structural, and photoluminescent studies. Inorg. Chem. 53, 9181–9191 (2014)

    Article  CAS  PubMed  Google Scholar 

  240. Bizzarri, C., Strabler, C., Prock, J., Trettenbrein, B., Ruggenthaler, M., Yang, C.-H., Polo, F., Iordache, A., Brüggeller, P., Cola, L.D.: Luminescent dinuclear Cu(I) complexes containing rigid tetraphosphine ligands. Inorg. Chem. 53, 10944–10951 (2014)

    Article  CAS  PubMed  Google Scholar 

  241. Knorn, M., Rawner, T., Czerwieniec, R., Reiser, O.: [Copper(phenanthroline)(bisisonitrile)]+-complexes for the visible-light-mediated atom transfer radical addition and allylation reactions. ACS Catal. 5, 5186–5193 (2015)

    Article  CAS  Google Scholar 

  242. Wang, B., Shelar, D.P., Han, X.Z., Li, T.T., Guan, X., Lu, W., Liu, K., Chen, Y., Fu, W.F., Che, C.M.: Long-lived excited states of zwitterionic copper (I) complexes for photoinduced cross-dehydrogenative coupling reactions. Chem. Eur. J. 21, 1184–1190 (2015)

    Article  CAS  PubMed  Google Scholar 

  243. Wasielewski, M.R.: Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992)

    Article  CAS  Google Scholar 

  244. Fischer, H., Schubert, M.: Synthetische Versuche Mit Blutfarbstoff-Spaltprodukten Und Komplexsalz-Bildung Bei Dipyrryl-Methenen (II.). Berichte der deutschen chemischen Gesellschaft (A and B Series). 57, 610–617 (1924)

    Article  Google Scholar 

  245. Son, H.-J., Han, W.-S., Chun, J.-Y., Kang, B.-K., Kwon, S.-N., Ko, J., Han, S.J., Lee, C., Kim, S.J., Kang, S.O.: Generation of blue light-emitting zinc complexes by band-gap control of the oxazolylphenolate ligand system: syntheses, characterizations, and organic light emitting device applications of 4-coordinated bis (2-oxazolylphenolate) zinc (II) complexes. Inorg. Chem. 47, 5666–5676 (2008)

    Article  CAS  PubMed  Google Scholar 

  246. Xu, H., Xu, Z.-F., Yue, Z.-Y., Yan, P.-F., Wang, B., Jia, L.-W., Li, G.-M., Sun, W.-B., Zhang, J.-W.: A novel deep blue-emitting ZnII complex based on carbazole-modified 2-(2-hydroxyphenyl) benzimidazole: synthesis, bright electroluminescence, and substitution effect on photoluminescent, thermal, and electrochemical properties. J. Phys. Chem. C. 112, 15517–15525 (2008)

    Article  CAS  Google Scholar 

  247. Xie, Y.-Z., Shan, G.-G., Li, P., Zhou, Z.-Y., Su, Z.-M.: A novel class of Zn (II) Schiff base complexes with aggregation-induced emission enhancement (AIEE) properties: synthesis, characterization and photophysical/electrochemical properties. Dyes Pigments. 96, 467–474 (2013)

    Article  CAS  Google Scholar 

  248. Shanmugam, S., Xu, J., Boyer, C.: Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths. J. Am. Chem. Soc. 137, 9174–9185 (2015)

    Article  CAS  PubMed  Google Scholar 

  249. Akçay, H.T., Bayrak, R., Demirbaş, Ü., Koca, A., Kantekin, H., Değirmencioğlu, I.: Synthesis, electrochemical and spectroelectrochemical properties of peripherally tetra-imidazole substituted metal free and metallophthalocyanines. Dyes Pigments. 96, 483–494 (2013)

    Article  CAS  Google Scholar 

  250. Sakamoto, R., Iwashima, T., Kögel, J.F., Kusaka, S., Tsuchiya, M., Kitagawa, Y., Nishihara, H.: Dissymmetric bis (dipyrrinato) zinc (II) complexes: rich variety and bright red to near-infrared luminescence with a large pseudo-stokes shift. J. Am. Chem. Soc. 138, 5666–5677 (2016)

    Article  CAS  PubMed  Google Scholar 

  251. Janghouri, M., Mohajerani, E., Amini, M.M., Najafi, E.: Green–White electroluminescence and green photoluminescence of zinc complexes. J. Lumin. 154, 465–474 (2014)

    Article  CAS  Google Scholar 

  252. Rybicka-Jasińska, K., Shan, W., Zawada, K., Kadish, K.M., Gryko, D.: Porphyrins as photoredox catalysts: experimental and theoretical studies. J. Am. Chem. Soc. 138, 15451–15458 (2016)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Lloret-Fillol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kandoth, N., Claros, M., Rodriguez, N., Lloret-Fillol, J. (2022). Photoinduced Electron-Transfer in First-Row Transition Metal Complexes. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_20

Download citation

Publish with us

Policies and ethics