Skip to main content

Fundamentals of Photochemistry: Excited State Formation/Deactivation and Energy Transfer Processes

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Part of the book series: Springer Handbooks ((SHB))

Abstract

Research on the photochemical behavior of coordination compounds began in the early 1970s with fundamental investigations of their excited states and photoreactivities. These investigations continue to be of great importance in the present day since they are the basis of knowledge for the evolution of each light-activated system that is being developed. Much was understood about mechanisms of deactivation of excited states, energy and/or electron transfer and proton-coupled to the electron transfer, which allowed to establish strategies to synthesize molecular structures with better functionality. In this chapter, we have discussed the fundamental concepts of photochemistry and photophysics of coordination compounds, the challenges already achieved, and the continuous pursuit to correlate fundamental with practical applications so that in the future it can be developed devices capable of performing important functions by receiving an external stimulus such as light, electrons, and ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Shafi, A.A., Bourdelande, J.L., Ali, S.S.: Photosensitized generation of singlet oxygen from rhenium(I) and iridium(III) complexes. Dalton Trans., 2510–2516 (2007)

    Google Scholar 

  2. Adamson, A.W., Fleischauer, P.D.: Concepts of Inorganic Photochemistry. Wiley, New York (1975)

    Google Scholar 

  3. Albini, A., Fagnoni, M.: 1908: Giacomo Ciamician and the concept of green chemistry. ChemSusChem. 1, 63–66 (2008)

    Article  CAS  PubMed  Google Scholar 

  4. Algar, W.R., Kim, H., Medintz, I.L., et al.: Emerging non-traditional Förster resonance energy transfer configurations with semiconductor quantum dots: investigations and applications. Coord. Chem. Rev. 263–264, 65–85 (2014)

    Article  CAS  Google Scholar 

  5. Alstrum-Acevedo, J.H., Brennaman, M.K., Meyer, T.J.: Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005)

    Article  CAS  PubMed  Google Scholar 

  6. Anderson, N.A., Lian, T.: Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coord. Chem. Rev. 248, 1231–1246 (2004)

    Article  CAS  Google Scholar 

  7. Baba, A.I., Shaw, J.R., Simon, J.A., et al.: The photophysical behavior of d6 complexes having nearly isoenergetic MLCT and ligand localized excited states. Coord. Chem. Rev. 171, 43–59 (1998)

    Article  CAS  Google Scholar 

  8. Balzani, V., Carassiti, V.: Photochemistry of Coordination Compounds. Academic Press, London (1970)

    Google Scholar 

  9. Balzani, V., Moggi, L., Manfrin, M.F., et al.: Quenching and sensitization processes of coordination compounds. Coord. Chem. Rev. 15, 321–433 (1975)

    Article  CAS  Google Scholar 

  10. Barros, C.L.D., Barbosa Neto, N.M., Patrocinio, A.O.T.: INFLUÊNCIA DA RIGIDEZ DO MEIO NA CINÉTICA DO FOTOCROMISMO DE DITIZONATOS METÁLICOS. Química Nova. 41, 999–1005 (2018)

    Google Scholar 

  11. Benkö, G., Kallioinen, J., Myllyperkiö, P., et al.: Interligand electron transfer determines triplet excited state electron injection in RuN3−sensitized TiO2 films. J. Phys. Chem. B. 108, 2862–2867 (2004)

    Article  CAS  Google Scholar 

  12. Bonnett, R.: Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem. Soc. Rev. 24, 19–33 (1995)

    Article  CAS  Google Scholar 

  13. Brindell, M., Stochel, G., Bertolasi, V., et al.: Photochemistry of trans- and cis-[RuCl2(dmso)4] in aqueous and nonaqueous solutions. Eur. J. Inorg. Chem. 2007, 2353–2359 (2007)

    Article  CAS  Google Scholar 

  14. Carvalho, F., Liandra-Salvador, E., Bettanin, F., et al.: Synthesis, characterization and photoelectrochemical performance of a tris-heteroleptic ruthenium(II) complex having 4,7-dimethyl-1,10-phenanthroline. Inorg. Chim. Acta. 414, 145–152 (2014)

    Article  CAS  Google Scholar 

  15. Chan, K., Yik-Sham Chung, C., Wing-Wah Yam, V.: Parallel folding topology-selective label-free detection and monitoring of conformational and topological changes of different G-quadruplex DNAs by emission spectral changes via FRET of mPPE-Ala–Pt(ii) complex ensemble. Chem. Sci. 7, 2842–2855 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, P., Meyer, T.J.: Medium effects on charge transfer in metal complexes. Chem. Rev. 98, 1439–1478 (1998)

    Article  CAS  PubMed  Google Scholar 

  17. Chi-Ming Leung, F., Wing-Wah Yam, V.: Covalent and non-covalent conjugation of few-layered graphene oxide and ruthenium(II) complex hybrids and their energy transfer modulation via enzymatic hydrolysis. ACS Appl. Mater. Interfaces. 10, 15582–15590 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. Concepción, J., Loeb, B., Simón-Manso, Y., et al.: Influence of L-type ligands on the relative stability and interconversion of cis–trans-[Ru(phen)2L2]n+ type complexes. A theoretical study. Polyhedron. 19, 2297–2302 (2000)

    Article  Google Scholar 

  19. Concepcion, J.J., House, R.L., Papanikolas, J.M., et al.: Chemical approaches to artificial photosynthesis. Proc. Natl. Acad. Sci. 109, 15560–15564 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Connell, T.U., Donnelly, P.S.: Labelling proteins and peptides with phosphorescent d6 transition metal complexes. Coord. Chem. Rev. 375, 267–284 (2018)

    Article  CAS  Google Scholar 

  21. Costa, R.D., Ortí, E., Bolink, H.J., et al.: Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew. Chem., Int. Ed. 51, 8178–8211 (2012)

    Article  CAS  Google Scholar 

  22. Creutz, C., Sutin, N.: Reaction of tris(bipyridine)ruthenium(III) with hydroxide and its application in a solar energy storage system. Proc. Natl. Acad. Sci. U. S. A. 72, 2858–2862 (1975)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. De Souza, J.D.S., De Andrade, L.O.M., Müller, A.V., et al.: Dye-sensitized solar cells based on ruthenium (II) tris-heteroleptic compounds or natural dyes. In: De Souza, F.L., Leite, E.R. (eds.) Nanoenergy: Nanotechnology Applied for Energy Production, pp. 69–106. Springer, Cham (2018)

    Chapter  Google Scholar 

  24. Demas, J.N., Diemente, D., Harris, E.W.: Oxygen quenching of charge-transfer excited states of ruthenium(II) complexes. Evidence for singlet oxygen production. J. Am. Chem. Soc. 95, 6864–6865 (1973)

    Article  CAS  Google Scholar 

  25. Demas, J.N., Mcbride, R.P., Harris, E.W.: Laser intensity measurements by chemical actinometry. A photooxygenation actinometer. J. Phys. Chem. 80, 2248–2253 (1976)

    Article  CAS  Google Scholar 

  26. Demas, J.N., Harris, E.W., Mcbride, R.P.: Energy transfer from luminescent transition metal complexes to oxygen. J. Am. Chem. Soc. 99, 3547–3551 (1977)

    Article  CAS  Google Scholar 

  27. Derosa, M.C., Crutchley, R.J.: Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002)

    Article  Google Scholar 

  28. Dexter, D.L.: A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  29. Doherty, M.D., Grills, D.C., Muckerman, J.T., et al.: Toward more efficient photochemical CO2 reduction: use of scCO2 or photogenerated hydrides. Coord. Chem. Rev. 254, 2472–2482 (2010)

    Article  CAS  Google Scholar 

  30. Dyer, J., Blau, W.J., Coates, C.G., et al.: The photophysics of fac-[Re(CO)3(dppz)(py)]+ in CH3CN: a comparative picosecond flash photolysis, transient infrared, transient resonance Raman and density functional theoretical study. Photochem. Photobiol. Sci. 2, 542–554 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Eriksson, M., Leijon, M., Hiort, C., et al.: Binding of .DELTA.- and .LAMBDA.-[Ru(phen)3]2+ to [d(CGCGATCGCG)]2 Studied by NMR. Biochemistry. 33, 5031–5040 (1994)

    Article  CAS  PubMed  Google Scholar 

  32. Ferraudi, G.J.: Elements of Inorganic Photochemistry. Wiley-interscience, New York (1988)

    Google Scholar 

  33. Fiorito, P.A., Polo, A.S.: A new approach toward cyanotype photography using tris-(oxalato)ferrate(III): an integrated experiment. J. Chem. Educ. 92, 1721–1724 (2015)

    Article  CAS  Google Scholar 

  34. Főrster, T.: 10th Spiers memorial lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc. 27, 7–17 (1959)

    Article  Google Scholar 

  35. Foxon, S.P., Phillips, T., Gill, M.R., et al.: A multifunctional light switch: DNA binding and cleavage properties of a heterobimetallic ruthenium–rhenium dipyridophenazine complex. Angew. Chem. Int. Ed. 46, 3686–3688 (2007)

    Article  CAS  Google Scholar 

  36. Frin, K., Nascimento, V.: Rhenium(I) polypyridine complexes as luminescence-based sensors for the BSA protein. J. Braz. Chem. Soc. 27, 179–185 (2016)

    CAS  Google Scholar 

  37. Frin, K.P.M., Itokazu, M.K., Iha, N.Y.M.: 1H NMR spectroscopy as a tool to determine accurate photoisomerization quantum yields of stilbene-like ligands coordinated to rhenium(I) polypyridyl complexes. Inorg. Chim. Acta. 363, 294–300 (2010)

    Article  CAS  Google Scholar 

  38. Gillam, T.A., Sweetman, M.J., Bader, C.A., et al.: Bright lights down under: metal ion complexes turning the spotlight on metabolic processes at the cellular level. Coord. Chem. Rev. 375, 234–255 (2018)

    Article  CAS  Google Scholar 

  39. Goncalves, M.R., Frin, K.P.M.: Synthesis, characterization, photophysical and electrochemical properties of fac-tricarbonyl(4,7-dichloro-1,10-phenanthroline)rhenium(I) complexes. Polyhedron. 97, 112–117 (2015)

    Article  CAS  Google Scholar 

  40. Grätzel, M.: Perspectives for dye-sensitized nanocrystalline solar cells. Prog. Photovolt. Res. Appl. 8, 171–185 (2000)

    Article  Google Scholar 

  41. Grätzel, M.: Photoelectrochemical cells. Nature. 414, 338–344 (2001)

    Article  PubMed  Google Scholar 

  42. Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol. C. 4, 145–153 (2003)

    Article  CAS  Google Scholar 

  43. Hatchard, C.G., Parker, C.A., Bowen, E.J.: A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. Lond. A Math. Phys. Sci. 235, 518–536 (1956)

    CAS  Google Scholar 

  44. Horváth, O., Stevenson, K.L.: Charge Transfer Photochemistry of Coordination Compounds. VCH Publishers Inc., New York (1993)

    Google Scholar 

  45. Hoshino, M., Laverman, L., Ford, P.C.: Nitric oxide complexes of metalloporphyrins: an overview of some mechanistic studies. Coord. Chem. Rev. 187, 75–102 (1999)

    Article  CAS  Google Scholar 

  46. Hostachy, S., Policar, C., Delsuc, N.: Re(I) carbonyl complexes: multimodal platforms for inorganic chemical biology. Coord. Chem. Rev. 351, 172–188 (2017)

    Article  CAS  Google Scholar 

  47. Huang, H., Banerjee, S., Sadler, P.J.: Recent advances in the design of targeted iridium(III) photosensitizers for photodynamic therapy. Chembiochem. 19, 1574–1589 (2018)

    Article  CAS  PubMed  Google Scholar 

  48. Jamieson, M.A., Serpone, N., Hoffman, M.Z.: Advances in the photochemistry and photophysics of chromium(iii) polypyridyl complexes in fluid media. Coord. Chem. Rev. 39, 121–179 (1981)

    Article  CAS  Google Scholar 

  49. Kasha, M.: Characterization of electronic transitions in complex molecules. Discuss. Faraday Soc. 9, 14–19 (1950)

    Article  Google Scholar 

  50. Kent, C.A., Concepcion, J.J., Dares, C.J., et al.: Water oxidation and oxygen monitoring by cobalt-modified fluorine-doped tin oxide electrodes. J. Am. Chem. Soc. 135, 8432–8435 (2013)

    Article  CAS  PubMed  Google Scholar 

  51. Klán, P., Wirz, J.: Photochemistry of Organic Compounds: From Concepts to Practice. Wiley, United Kingdom (2009)

    Book  Google Scholar 

  52. Kober, E.M., Meyer, T.J.: Concerning the absorption spectra of the ions M(bpy)32+ (M = Fe, Ru, Os; bpy = 2,2'-bipyridine). Inorg. Chem. 21, 3967–3977 (1982)

    Article  CAS  Google Scholar 

  53. Kuhn, H.J., Braslavsky, S.E., Schmidt, R.: Chemical actinometry (IUPAC Technical Report). Pure Appl. Chem. 76, 2105 (2004)

    Article  CAS  Google Scholar 

  54. Kumar, C.V., Barton, J.K., Turro, N.J.: Photophysics of ruthenium complexes bound to double helical DNA. J. Am. Chem. Soc. 107, 5518–5523 (1985)

    Article  CAS  Google Scholar 

  55. Kuramochi, Y., Ishitani, O., Ishida, H.: Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes. Coord. Chem. Rev. 373, 333–356 (2018)

    Article  CAS  Google Scholar 

  56. Lacky, D.E., Pankuch, B.J., Crosby, G.A.: Charge-transfer excited states of osmium(II) complexes. 2. Quantum-yield and decay-time measurements. J. Phys. Chem. 84, 2068–2074 (1980)

    Article  CAS  Google Scholar 

  57. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer US, New York, USA (2006)

    Google Scholar 

  58. Le Gac, S., Foucart, M., Gerbaux, P., et al.: Photo-reactive RuII-oligonucleotide conjugates: influence of an intercalating ligand on the inter- and intra-strand photo-ligation processes. Dalton Trans. 39, 9672–9683 (2010)

    Article  PubMed  CAS  Google Scholar 

  59. Lecomte, J.P., Mesmaeker, A.K.-D., Demeunynck, M., et al.: Synthesis and characterisation of a new DNA-binding bifunctional ruthenium(II) complex. J. Chem. Soc. Faraday Trans. 89, 3261–3269 (1993)

    Article  CAS  Google Scholar 

  60. Lees, A.J.: Luminescence properties of organometallic complexes. Chem. Rev. 87, 711–743 (1987)

    Article  CAS  Google Scholar 

  61. Liu, Z., He, W., Guo, Z.: Metal coordination in photoluminescent sensing. Chem. Soc. Rev. 42, 1568–1600 (2013)

    Article  PubMed  CAS  Google Scholar 

  62. Louie, M.-W., Fong, T.T.-H., Lo, K.K.-W.: Luminescent rhenium(I) polypyridine fluorous complexes as novel trifunctional biological probes. Inorg. Chem. 50, 9465–9471 (2011)

    Article  CAS  PubMed  Google Scholar 

  63. Mako, T.L., Racicot, J.M., Levine, M.: Supramolecular luminescent sensors. Chem. Rev. 119, 322–477 (2019)

    Article  CAS  PubMed  Google Scholar 

  64. Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., et al.: Control of charge trapping in a photorefractive polymer. Appl. Phys. Lett. 66, 1038–1040 (1995)

    Article  CAS  Google Scholar 

  65. Manbeck, G.F., Muckerman, J.T., Szalda, D.J., et al.: Push or pull? Proton responsive ligand effects in rhenium tricarbonyl CO2 reduction catalysts. J. Phys. Chem. B. 119, 7457–7466 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. Mathew, S., Yella, A., Gao, P., et al.: Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6, 242–247 (2014)

    Article  CAS  PubMed  Google Scholar 

  67. Merkle, A.C., Fry, N.L., Mascharak, P.K., et al.: Mechanism of NO photodissociation in photolabile manganese–NO complexes with pentadentate N5 ligands. Inorg. Chem. 50, 12192–12203 (2011)

    Article  CAS  PubMed  Google Scholar 

  68. Meyer, T.J.: Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22, 163–170 (1989)

    Article  CAS  Google Scholar 

  69. Monro, S., Colón, K.L., Yin, H., et al.: Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities, and highlights from the development of TLD1433. Chem. Rev. 119, 797–828 (2019)

    Article  CAS  PubMed  Google Scholar 

  70. Montalti, M., Credi, A., Prodi, L., et al.: Handbook of Photochemistry. CRC Press, Taylor & Francis, Boca Raton (2006)

    Book  Google Scholar 

  71. Morris, A.J., Meyer, G.J., Fujita, E.: Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc. Chem. Res. 42, 1983–1994 (2009)

    Article  CAS  PubMed  Google Scholar 

  72. Müller, A.V., Polo, A.S.: Mechanistic insights into the stepwise assembly of ruthenium(II) tris-heteroleptic compounds. Inorg. Chem. 57, 13829–13839 (2018)

    Article  PubMed  CAS  Google Scholar 

  73. Müller, A.V., Mendonca, P.S., Parant, S., et al.: Effects of methyl-substituted phenanthrolines on the performance of ruthenium(II) dye-sensitizers. J. Braz. Chem. Soc. 26, 2224–2232 (2015)

    Google Scholar 

  74. Muller, A.V., Ramos, L.D., Frin, K.P.M., et al.: A high efficiency ruthenium(ii) tris-heteroleptic dye containing 4,7-dicarbazole-1,10-phenanthroline for nanocrystalline solar cells. RSC Adv. 6, 46487–46494 (2016)

    Article  CAS  Google Scholar 

  75. Murtaza, Z., Graff, D.K., Zipp, A.P., et al.: Energy transfer in the inverted region: calculation of relative rate constants by emission spectral fitting. J. Phys. Chem. 98, 10504–10513 (1994)

    Article  CAS  Google Scholar 

  76. Nishikitani, Y., Suga, K., Uchida, S., et al.: High-color-rendering-index white polymer light-emitting electrochemical cells based on ionic host-guest systems: utilization of blend films of blue-fluorescent cationic polyfluorenes and red-phosphorescent cationic iridium complexes. Org. Electron. 51, 168–172 (2017)

    Article  CAS  Google Scholar 

  77. Nocera, D.G.: Solar fuels and solar chemicals industry. Acc. Chem. Res. 50, 616–619 (2017)

    Article  CAS  PubMed  Google Scholar 

  78. O’regan, B., Gratzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353, 737–740 (1991)

    Article  Google Scholar 

  79. Pankuch, B.J., Lacky, D.E., Crosby, G.A.: Charge-transfer excited states of osmium(II) complexes. 1. Assignment of the visible absorption bands. J. Phys. Chem. 84, 2061–2067 (1980)

    Article  CAS  Google Scholar 

  80. Parker, C.A., Bowen, E.J.: A new sensitive chemical actinometer. I. Some trials with potassium ferrioxalate. Proc. R. Soc. Lond. A Math. Phys. Sci. 220, 104–116 (1953)

    CAS  Google Scholar 

  81. Pettersson Rimgard, B., Föhlinger, J., Petersson, J., et al.: Ultrafast interligand electron transfer in cis-[Ru(4,4′-dicarboxylate-2,2′-bipyridine)2(NCS)2]4− and implications for electron injection limitations in dye sensitized solar cells. Chem. Sci. 9, 7958–7967 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Porter, G.B.: Introduction to inorganic photochemistry. J. Chem. Educ. 60, 785–790 (1983)

    Article  CAS  Google Scholar 

  83. Pyle, A.M., Rehmann, J.P., Meshoyrer, R., et al.: Mixed-ligand complexes of ruthenium(II): factors governing binding to DNA. J. Am. Chem. Soc. 111, 3051–3058 (1989)

    Article  CAS  Google Scholar 

  84. Ragone, F., Saavedra, H.H.M., Gara, P.M.D., et al.: Photosensitized generation of singlet oxygen from re(I) complexes: a photophysical study using LIOAS and luminescence techniques. J. Phys. Chem. A. 117, 4428–4435 (2013)

    Article  CAS  PubMed  Google Scholar 

  85. Ramos, L.D., Sampaio, R.N., De Assis, F.F., et al.: Contrasting photophysical properties of rhenium(i) tricarbonyl complexes having carbazole groups attached to the polypyridine ligand. Dalton Trans. 45, 11688–11698 (2016)

    Article  CAS  PubMed  Google Scholar 

  86. Ramos, L.D., Da Cruz, H.M., Morelli Frin, K.P.: Photophysical properties of rhenium(I) complexes and photosensitized generation of singlet oxygen. Photochem. Photobiol. Sci. 16, 459–466 (2017)

    Article  CAS  PubMed  Google Scholar 

  87. Rose, M.J., Mascharak, P.K.: Photoactive ruthenium nitrosyls: effects of light and potential application as NO donors. Coord. Chem. Rev. 252, 2093–2114 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roundhill, D.M.: Photochemistry and Photophysics of Metal Complexes. Plenum Press, New York (1994)

    Book  Google Scholar 

  89. Sabbatini, N., Balzani, V.: Photosensitized aquation of the hexacyanochromate(III) ion. Evidence against the doublet mechaism. J. Am. Chem. Soc. 94, 7587–7589 (1972)

    Article  CAS  Google Scholar 

  90. Sabbatini, N., Scandola, M.A., Balzani, V.: Intersystem crossing efficiency in the hexacyanochromate(III) ion. J. Phys. Chem. 78, 541–543 (1974)

    Article  CAS  Google Scholar 

  91. Sacksteder, L., Lee, M., Demas, J.N., et al.: Long-lived, highly luminescent rhenium(I) complexes as molecular probes: intra- and intermolecular excited-state interactions. J. Am. Chem. Soc. 115, 8230–8238 (1993)

    Article  CAS  Google Scholar 

  92. Sainuddin, T., Mccain, J., Pinto, M., et al.: Organometallic Ru(II) photosensitizers derived from π-expansive cyclometalating ligands: surprising theranostic PDT effects. Inorg. Chem. 55, 83–95 (2016)

    Article  CAS  PubMed  Google Scholar 

  93. Sampaio, R.N., Müller, A.V., Polo, A.S., et al.: Correlation between charge recombination and lateral hole-hopping kinetics in a series of cis-Ru(phen′)(dcb)(NCS)2 dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 9, 33446–33454 (2017)

    Article  CAS  PubMed  Google Scholar 

  94. Schneider, J., Jia, H., Muckerman, J.T., et al.: Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 41, 2036–2051 (2012)

    Article  CAS  PubMed  Google Scholar 

  95. Schoonover, J.R., Bates, W.D., Meyer, T.J.: Application of resonance Raman spectroscopy to electronic structure in metal complex excited states. Excited-state ordering and electron delocalization in dipyrido[3,2-a:2′,3′-c]phenazine (dppz): complexes of Re(I) and Ru(II). Inorg. Chem. 34, 6421–6422 (1995)

    Article  CAS  Google Scholar 

  96. Schubert, E.F., Kim, J.K.: Solid-state light sources getting smart. Science. 308, 1274 (2005)

    Article  CAS  PubMed  Google Scholar 

  97. Sessolo, M., Bolink, H.J.: Hybrid organic–inorganic light-emitting diodes. Adv. Mater. 23, 1829–1845 (2011)

    Article  CAS  PubMed  Google Scholar 

  98. Sousa, S.F., Sampaio, R.N., Barbosa Neto, N.M., et al.: The photophysics of fac-[Re(CO)3(NN)(bpa)]+ complexes: a theoretical/experimental study. Photochem. Photobiol. Sci. 13, 1213–1224 (2014)

    Article  CAS  PubMed  Google Scholar 

  99. Straub, S., Brünker, P., Lindner, J., et al.: Femtosecond infrared spectroscopy reveals the primary events of the ferrioxalate actinometer. Phys. Chem. Chem. Phys. 20, 21390–21403 (2018)

    Article  CAS  PubMed  Google Scholar 

  100. Tanielian, C., Wolff, C., Esch, M.: Singlet oxygen production in water: aggregation and charge-transfer effects. J. Phys. Chem. 100, 6555–6560 (1996)

    Article  CAS  Google Scholar 

  101. Teixeira Veiga, E., Vidal Müller, A., Duarte Ramos, L., et al.: Interrelationship between the ancillary ligand structure, acid–base properties, and TiO2 surface coverage of ruII dyes. Eur. J. Inorg. Chem. 2018, 2680–2688 (2018)

    Article  CAS  Google Scholar 

  102. Turro, N.J.: Modern Molecular Photochemistry. University Science Book, Sausalito (1991)

    Google Scholar 

  103. Turro, C., Bossmann, S.H., Jenkins, Y., et al.: Proton transfer quenching of the MLCT excited state of Ru(phen)2dppz2+ in homogeneous solution and bound to DNA. J. Am. Chem. Soc. 117, 9026–9032 (1995)

    Article  CAS  Google Scholar 

  104. Tyson, D.S., Gryczynski, I., Castellano, F.N.: Long-range resonance energy transfer to [Ru(bpy)3]2+. Chem. A Eur. J. 104, 2919–2924 (2000)

    CAS  Google Scholar 

  105. Van Der Salm, H., Elliott, A.B..S., Gordon, K.C.: Substituent effects on the electronic properties of complexes with dipyridophenazine and triazole ligands: electronically connected and disconnected ligands. Coord. Chem. Rev. 282–283, 33–49 (2015)

    Google Scholar 

  106. Wallace, L., Rillema, D.P.: Photophysical properties of rhenium(i) tricarbonyl complexes containing alkyl-substituted and aryl-substituted phenanthrolines as ligands. Inorg. Chem. 32, 3836–3843 (1993)

    Article  CAS  Google Scholar 

  107. Wardle, B.: Principles and Applications of Photochemistry. Wiley, Manchester (2009)

    Google Scholar 

  108. Waterland, M.R., Kelley, D.F.: Photophysics and relaxation dynamics of Ru(4,4‘Dicarboxy-2,2′-bipyridine)2cis(NCS)2 in solution. J. Phys. Chem. A. 105, 4019–4028 (2001)

    Article  CAS  Google Scholar 

  109. Wilkinson, F., Farmilo, A.: Mechanism of quenching of the triplet states of organic compounds by tris-(β-diketonato) complexes of iron(III), ruthenium(III) and aluminium(III). J. Chem. Soc., Faraday Trans. 2. 72, 604–618 (1976)

    Article  CAS  Google Scholar 

  110. Wilkinson, F., Farmilo, A.: Quenching of the triplet state of acridine by chromium (III) complexes. J. Chem. Soc., Faraday Trans. 2. 74, 2083–2091 (1978)

    Article  CAS  Google Scholar 

  111. Wilkinson, F., Tsiamis, C.: Electronic energy transfer from triplet states of organic compounds to coordination compounds. Part 1.—Effects of spin-statistical factors on the efficiency of quenching by β-diketonato complexes of chromium(III). J. Chem. Soc., Faraday Trans. 2. 77, 1681–1693 (1981)

    Article  CAS  Google Scholar 

  112. Wrighton, M., Morse, D.L.: Nature of the lowest excited state in tricarbonylchloro-1,10-phenanthrolinerhenium(I) and related complexes. J. Am. Chem. Soc. 96, 998–1003 (1974)

    Article  CAS  Google Scholar 

  113. Xiao, L., Chen, Z., Qu, B., et al.: Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv. Mater. 23, 926–952 (2011)

    Article  CAS  PubMed  Google Scholar 

  114. Yamashita, K.-I., Sato, K.-I., Kawano, M., et al.: Photo-induced self-assembly of Pt(ii)-linked rings and cages via the photolabilization of a Pt(ii)–py bond. New J. Chem. 33, 264–270 (2009)

    Article  CAS  Google Scholar 

  115. Yamazaki, Y., Takeda, H., Ishitani, O.: Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobiol. C. 25, 106–137 (2015)

    Article  CAS  Google Scholar 

  116. Yersin, H. (ed.): Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. Springer Berlin Heindelberg (2004)

    Google Scholar 

  117. Yip, A.M.-H., Lo, K.K.-W.: Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. Coord. Chem. Rev. 361, 138–163 (2018)

    Article  CAS  Google Scholar 

  118. Zakeeruddin, S.M., Nazeeruddin, M.K., Humphry-Baker, R., et al.: Synthesis and photophysical properties of trans-dithiocyanato bis(4,4′-dicarboxylic acid-2,2′-bipyridine) ruthenium(II) charge transfer sensitizer. Inorg. Chim. Acta. 296, 250–253 (1999)

    Article  CAS  Google Scholar 

  119. Zanoni, K.P.S., Murakami Iha, N.Y.: Sky-blue OLED through PVK:[Ir(Fppy)2(Mepic)] active layer. Synth. Met. 222, 393–396 (2016)

    Article  CAS  Google Scholar 

  120. Zanoni, K.P.S., Ito, A., Grüner, M., et al.: Photophysical dynamics of the efficient emission and photosensitization of [Ir(pqi)2(NN)]+ complexes. Dalton Trans. 47, 1179–1188 (2018)

    Article  CAS  PubMed  Google Scholar 

  121. Zhu, H., Fan, J., Wang, B., et al.: Fluorescent, MRI, and colorimetric chemical sensors for the first-row d-block metal ions. Chem. Soc. Rev. 44, 4337–4366 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (2016/21993-6 and 2017/18063-0) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André Sarto Polo or Karina Passalacqua Morelli Frin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarto Polo, A., Passalacqua Morelli Frin, K. (2022). Fundamentals of Photochemistry: Excited State Formation/Deactivation and Energy Transfer Processes. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_2

Download citation

Publish with us

Policies and ethics